
1. Introduction
Detrital geochronology has transformed the way geologists approach many Earth Science questions. Re-
search incorporating detrital geochronology is wide ranging, from standard application in studies of 
sediment provenance and dispersal patterns (e.g., Thomas et al.,  2020), determination of the maximum 
depositional age of stratigraphy (e.g., Dickinson & Gehrels,  2009; Vermeesch, 2020), and reconstructing 
paleogeography and landscape evolution (e.g., Roberts, 2012), to recent novel applications in determining 
controls on paleoclimate modulations (e.g., McKenzie et al., 2016), placing temporal constraints on floral 
and faunal continental ecosystems (e.g., Tucker et al., 2013), and estimating the age of early hominins (e.g., 
Böhme et al., 2017).

Zircon is the mineral of choice in detrital geochronology as it is physically and chemically robust, refrac-
tory, can survive multiple erosional and/or tectonic cycles, and incorporates abundant U with little initial 
Pb (Cherniak et al., 1997; Speer, 1980; Stacey & Kramers, 1975). In addition to being a useful mineral for 
geochronology, zircon can also be paired with secondary information such as (U-Th)/He or fission track 
thermochronometry for determining thermal histories (e.g., Reiners,  2005; Stockli,  2005), trace element 
geochemistry for fingerprinting sediment sources (e.g., McKenzie et al., 2018; cf., Hoskin & Ireland, 2000), 
Hf analysis for understanding crustal evolution and the rate of crustal growth through time (e.g., Belousova 
et al., 2010; Roberts & Spencer, 2015), or physical characteristics of zircon such as grain roundness (Decou 
et al., 2013; Sundell et al., 2018) or grain size (Leary et al., 2020) for detailed analysis of sediment recycling 
and provenance.

Abstract Detrital geochronology provides insight into a broad range of Earth Science questions. 
However, detrital zircon U-Pb age distributions are inherently univariate, and thus quantitative 
comparison methods are limited to one-dimension (1D) and subject to nonunique results due to 
overlapping age groups. We developed two-dimensional (2D) quantitative comparison measures for 
bivariate kernel density estimates (KDEs) and cumulative distribution functions (CDFs). These methods 
are extensions of 1D quantitative comparison measures commonly used in detrital geochronology: 
Similarity, Likeness, and Cross-correlation of KDEs and Kolmogorov-Smirnov (K-S) and Kuiper tests 
of CDFs. We demonstrate the efficacy of these methods by applying them to a global compilation of 
detrital and igneous zircon univariate U-Pb data (n = 767,660) and bivariate U-Pb and Hf (i.e., εHfT) data 
(n = 114,311) parsed geographically into eight continental landmasses demarcated by Paleozoic sutures. 
The 2D quantitative comparison measures behave in a similar fashion to their 1D counterparts in terms 
of sensitivity and consistency regardless of parameterization (e.g., kernel bandwidth and discretization 
interval). Results show that the detrital record reliably reflects the igneous record for both univariate U-Pb 
and bivariate εHfT distributions between 4,400 and 0 Ma. In contrast, 1D and 2D quantitative comparison 
results differ over the narrower Ediacaran-Cambrian time interval due to nonunique univariate zircon 
U-Pb age groups; the 2D quantitative results consistently identify continental landmasses involved in 
the formation of Gondwana. We implemented the 2D methods in a new MATLAB-based graphical user 
interface, DZstats2D, which is available as open-source code and as standalone applications for macOS 
and Windows.
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Early interpretation of detrital zircon geochronology information began with bulk sample analysis of zir-
con concentrates (i.e., all of the zircons from a clastic sample dissolved and analyzed as a single analysis) 
for complementary visual assessment to geological observations (e.g., Tatsumoto & Patterson, 1964). Iso-
tope-dilution thermal ionization mass spectrometry (ID-TIMS) and secondary ionization mass spectrome-
try (SIMS) enabled single-grain zircon analysis which led to early qualitative comparison of detrital zircon 
U-Pb age distributions (e.g., Schärer & Allègre, 1982). The advent and application of laser ablation-induc-
tively coupled plasma-mass spectrometry (LA-ICP-MS) to detrital zircon U-Pb geochronology has dramat-
ically increased the efficiency and rate of sample throughput, resulting in a punctuated increase in the 
number of ages typically measured for an individual sample (n) from n ≈  60 (e.g., Dodson et al.,  1988) 
to n > 100 in the early 2000s (Vermeesch, 2004), and more recently to n > 300 for complex samples (e.g., 
Pullen et al., 2014; Sundell et al., 2020). The comparison of detrital zircon age distributions remained a 
primarily qualitative endeavor until the early 2000s (e.g., Gehrels et al., 1995). Since then, the research field 
has rapidly built in quantitative sophistication, with the development of pairwise comparison measures 
of age distributions (Amidon et al., 2005; Gehrels, 2000; Satkoski et al., 2013; Saylor et al., 2013; Saylor & 
Sundell, 2016; Tye et al., 2019; Vermeesch, 2018), to more advanced methods of forward and inverse detrital 
zircon U-Pb geochronology mixture modeling (e.g., Saylor et al., 2019; Sharman & Johnstone, 2017; Sundell 
& Saylor, 2017).

Detrital zircon U-Pb age distributions are univariate and thus are limited to one-dimensional (1D) quanti-
tative comparison methods. Results of 1D comparisons are often nonunique due to overlapping or shared 
age groups between sample age distributions. We present two-dimensional (2D) quantitative comparison 
measures that are simple mathematical extensions of quantitative comparison measures commonly applied 
to univariate detrital zircon U-Pb age distributions. Specifically, we developed 2D Similarity, Likeness, and 
Cross-correlation of bivariate kernel density estimates (KDEs), and Kolmogorov-Smirnov (K-S) Test D and 
Kuiper Test V measures of bivariate cumulative distribution functions (CDFs). We demonstrate the utility 
of these methods with application to a global compilation of igneous and detrital zircon U-Pb and Hf data 
(Puetz & Condie, 2019). We developed the 2D methods in MATLAB and provide a new software package, 
DZstats2D, as open-source code and as standalone graphical user interfaces for macOS and Windows avail-
able at github.com/kurtsundell/DZstats2D along with all of the data discussed in this contribution.

2. Data Visualization
2.1. Univariate Data Visualization

Univariate detrital age distributions (i.e., age only) can be visualized in a variety of ways. The simplest vis-
ualizations of such data are univariate scatter plots (Figure 1a) and binned histograms (Figure 1b). More 
commonly in detrital geochronology, univariate age distributions are visualized as probability density plots 
(PDPs) or KDEs (Figure 1c), or CDFs (Figure 1d).

PDPs are discrete distributions that estimate an age distribution's probability density function (PDF). PDPs 
are calculated from n observations as

   


 
n

i
i 1

1f x f x ,
n

 (1)

where n is the number of ages and each age, fi(x), is represented by a Gaussian function
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where μi is the grain age, σi is the corresponding analytical uncertainty, and i is a single analysis (Mill-
er, 2014; Pearson, 2011; Saylor & Sundell, 2016). PDPs tend to oversmooth the older age fraction of detrital 
distributions because uncertainty generally scales with age and the individual Gaussian curves are wider 
and lower amplitude for older ages.

KDEs are another way to estimate a sample age distribution's PDF, calculated as
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where n is the number of observations, h is the kernel bandwidth, K is the kernel function (typically a Gauss-
ian curve, but also can be a triangle, boxcar, etc.), and μi is the grain age (Silverman, 1986; Vermeesch, 2012). 
KDEs do not incorporate analytical uncertainty, as the Gaussian kernel bandwidth is set arbitrarily or 
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Figure 1. Motivation for 2D quantitative comparison. Univariate age distributions shown as (a) scatter plots, (b) histograms, (c) kernel density estimates, and 
(d) cumulative distribution functions. Bivariate εHfT distributions shown as (e) scatter plots, (f) kernel density estimates with 2D view (upper) and 3D view 
(lower), (g) cumulative distribution functions with 2D view (upper) and 3D view (lower). The bivariate data have the same ages as the univariate data, but the 
quantitative comparison results are significantly different in 1D and 2D.
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determined using sample density optimization methods (e.g., Botev et al., 2010; Vermeesch, 2018). Con-
versely to PDPs, KDEs tend to oversmooth the younger fraction of detrital age distributions.

Empirical CDFs are cumulative sum step functions that increase by 1/n for every observation along x from 0 
to 1 along y (Figure 1d). The y-axis value of a CDF is the fractional representation of probability that obser-
vations in a sample that are less than or equal to the corresponding x-axis value such that

     ,fi x P X x (4)

where fi is the function of x as an empirical CDF, X is a random value or observation in fi, and P is the prob-
ability that X will have a value less than or equal to x (Figure 1d). Similar to KDEs, CDFs do not incorporate 
sample uncertainty.

2.2. Bivariate Data Visualization

Bivariate data can also be visualized in a number of ways. The most common way to visualize bivariate data 
is with bivariate scatter plots (Figure 1e). Unfortunately, scatter plots do not give a good sense of data den-
sity, which is critical information for interpretations of detrital distributions. Bivariate KDEs are a practical 
and common way to visualize data density that have been previously applied to zircon U-Pb and Hf data 
(e.g., Andersen, 2014; Roberts & Spencer, 2015; Spencer et al., 2019). Bivariate KDEs typically take the form 
of color-coded intensity plots, with the three-dimensional (3D) density volume viewed parallel to a z-axis 
(Figure 1f). Bivariate KDEs can be constructed in a similar fashion to univariate KDEs (Silverman, 1986) 
where each data point is converted into a 3D Gaussian volume, summed, and normalized such that the 
density distribution integrates to 1. A computationally efficient way to construct bivariate KDEs as imple-
mented here involves first performing a discrete cosine transform of the bivariate data (Ahmed et al., 1974) 
onto a square grid based in a factor of 2 (e.g., 29 × 29 = 512 × 512); multiplying the resulting bivariate ma-
trix by a Gaussian function with specified kernel bandwidths in both the x and y directions; performing an 
inverse discrete cosine transform of the Gaussian-scaled matrix, and normalizing such that the resulting 
volume integrates to 1. As with a univariate KDE, the Gaussian kernel bandwidth can be set arbitrarily or 
determined via optimization based on sample density (Botev et al., 2010). A common rule of thumb is to 
set the kernel bandwidths based on typical analytical uncertainty levels (e.g., 1%–2% for U-Pb, 0.5–1 ε units 
for Lu-Hf, at 1σ).

CDFs can also be visualized in bivariate space. An efficient way to construct a bivariate CDF is to first 
construct a bivariate KDE, then calculate the cumulative sum in both the x-axis and y-axis directions (Fig-
ure 1g). This can also be done by taking the cross product of cumulative sums in the x- and y-axis directions. 
The result is a volume with z-axis values that monotonically increase to 1 in a shared corner of x-axis and 
y-axis space (Figure 1g). The bivariate CDF may differ depending on which x–y quadrant (I–IV) is consid-
ered and therefore can be defined in four ways (Peacock, 1983; Press & Teukolsky, 1988):

       1 , , quadrant I, shown in Figure1g ,F X Y P X x Y y (5)

       2 , , quadrant II ,F X Y P X x Y y (6)

       3 , , quadrant III ,F X Y P X x Y y (7)

       4 , , quadrant IV .F X Y P X x Y y (8)

3. Quantitative Comparison
3.1. 1D Quantitative Comparison

Several methods have been developed as relative measures of similarity and dissimilarity in detrital geo-
chronology. Because univariate PDPs and KDEs are continuous functions, two functions f(x) and g(x) can 
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be quantitatively compared by discretizing them at the same interval (e.g., 1 Myr steps) over the same age 
range (e.g., 500–2,500 Ma; Figures 1b and 2a–2b). Figures 2a–2b shows two KDEs with a coarse 40 Myr 
discretization interval (i.e., one y axis value for every 40 Myr along x). A simple way to compare these dis-
tributions is to calculate their similarity. Similarity in 1D (S1D) is the same as the Bhattacharya Coefficient 
between two discrete probability distributions (Bhattacharya, 1943) and was introduced to detrital geochro-
nology by Gehrels (2000). Similarity is calculated by taking the sum of geometric mean of each pair of y 
axis values along x:

     1 .DS f x g x (9)

Here, 1 is perfectly similar and 0 perfectly dissimilar. The individual geometric mean calculations can also 
be plotted before summing for a visual representation of S1D with higher y-axis values corresponding to 
where f(x) and g(x) are similar (Figure 2c). Another way to compare two univariate PDPs or KDEs is to cal-
culate Mismatch (Amidon et al., 2005). Mismatch is the sum the absolute difference of each pair of y-axis 
values along f(x) and g(x) divided by 2:

   
 1 ,

2D

f x g x
M (10)

where 1 is perfectly dissimilar and 0 is perfectly similar. As above, the individual M1D calculations along x 
can be plotted before summing to produce a visual representation showing where f(x) and g(x) are dissimilar 
(Figure 2d). Likeness (Satkoski et al., 2013) is the complement to Mismatch and calculated as

 1 11 ,D DL M (11)

where 0 is perfectly dissimilar and 1 is perfectly similar, as with S1D above. A fourth way to quantitatively 
compare two PDPs or KDEs is to calculate the coefficient of determination. Here, the Cross-correlation 
coefficient of univariate detrital data (R2

1D, Saylor et al., 2013) is calculated as

     
     

 
         
      

2

2
1 2 2

Figure 2e .D

f x f g x g
R

f x f g x g
 (12)

Relative measures of dissimilarity can be calculated from two CDFs (Figure  1d) with the Komolgor-
ov-Smirnov (K-S) Test D statistic (Massey, 1951) and the Kuiper Test V statistic (Kuiper, 1960). The K-S Test 
D statistic is the maximum absolute difference between two CDFs

  1DD max CDF1 CDF2 . (13)

The Kuiper Test V statistic is the sum of the maximum differences between CDF1 and CDF2 and vice versa:

      1DV max CDF1 CDF2 max CDF2 CDF1 . (14)

For both D1D and V1D, 1 is perfectly dissimilar and 0 is perfectly similar. K-S Test and Kuiper Test D1D and 
V1D can be used to produce p-values. However, p-values represent statistical hypothesis tests that are poorly 
suited for quantitative analysis of detrital data (Vermeesch, 2013, their Appendix B). Specifically, calcula-
tion of p-values in detrital geochronology produces too many Type-I errors (rejecting a true null hypothesis) 
and Type-II errors (accepting of a false null hypothesis) because they are highly sensitive to the number of 
ages in a distribution (n) used to produce the CDFs, and also due to mixing n with “effect size,” that is, the 
degree to which the null hypothesis is false (Cohen, 1977; Vermeesch, 2013). Thus, p-values are unsuitable 
for comparison of detrital age distributions and should not be used as relative measures of dissimilarity 
(Saylor & Sundell, 2016; Vermeesch, 2013). Furthermore, p-values are fraught with issues and have been 
historically misused across the physical sciences (see recent review in Hubbard, 2019 and summary of best 
practices for p-values in Wasserstein et al., 2019).
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Figure 2. 1D and 2D quantitative comparison methods for univariate and bivariate kernel density estimates (KDEs). 
((a)–(b)) Example KDEs f(x) and g(x). (c) Intermediate step in calculating Similarity before summing. (d) Intermediate 
step in calculating Mismatch. (e) Cross plot of each pair of points along the x-axis from f(x) and g(x); linear regression 
of these values is used to calculate the coefficient of determination, Cross-correlation. ((f)–(j)) Bivariate counterparts 
to ((a)–(e)). Note that the 1D quantitative comparisons yield very similar results and the 2D comparisons yield very 
dissimilar results, despite sharing common ages. The lowest values of the colorbars for parts f-i are white in order to 
clip the bivariate plots at the 98% from peak density level.
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3.2. 2D Quantitative Comparison

Each of the 1D measures of similarity and dissimilarity can be modified to handle bivariate data. Quanti-
tative comparison of the univariate and bivariate distributions in Figure 1 motivates the development of 
2D quantitative comparison. Specifically, the 1D measures consistently show the distributions are nearly 
identical (Figures 1a–1d). However, 2D measures reveal these same data are indeed quite dissimilar with 
consideration of a second dimension (Figures 1e–1g).

As with univariate distributions, bivariate distributions can be represented as discretized functions. Fig-
ures 2f–2g shows two coarsely discretized bivariate kernel density estimates F(x,y) and G(x,y) with data 
points every 125 Myr on the x-axis and 2.5 ε units on the y-axis (as determined from discretization on a 
16 × 16 grid with an x-axis range from 500 to 2,500 Ma and y-axis range from −25 to 15 ε units). Similarity 
can be extended to 2D by calculating the sum of geometric mean of each value of a square x × y matrix:

       2 , , Figures 2f–2h .DS F x y G x y (15)

Here, each pair of values along both the x-axis and y-axis directions produces a third matrix of values that 
may be plotted as a 2D intensity plot of Similarity values which highlight where two 2D density distribu-
tions are similar (Figure 2h), which when integrated produces S2D.

Mismatch is extended to 2D as

     
 2

, ,
Figure 2i .

2D

F x y G x y
M (16)

Here, half of the absolute difference is calculated for each x × y value of two bivariate KDEs F(x,y) and 
G(x,y) and summed together to produce M2D. As with the S2D calculation, an intermediate matrix of values 
is produced and can be plotted before summing; this plot shows where F(x,y) and G(x,y) are dissimilar 
(Figure 2i), which when summed together gives M2D. Similarity and Mismatch are unique in that they can 
be visualized as 2D intensity plots of similarity and dissimilarity, respectively, whereas the following 2D 
quantitative measures do not lend themselves to this type of visualization because they either involve calcu-
lations that are already summed to a single value (e.g., L2D) or involve multiple summations (e.g., R2

2D). For 
example, Likeness is converted to 2D as

 2 21 .D DL M (17)

Here, L2D cannot be visualized as a 2D intensity plot of correspondence because M2D is already reduced to a 
single value. Cross-correlation for bivariate data is calculated as

     
     

 
         
      

2

2
2 2 2

, ,
Figure 2j .

, ,
D

F x y F G x y G
R

F x y F G x y G
 (18)

The K-S Test can be modified to calculate quantitative comparison of bivariate CDFs (e.g., Peacock, 1983). 
The D statistic is calculated in a similar way to the 1D scenario where

  2 max CDF1 CDF2 ,DD (19)

for all pairwise values of two bivariate CDFs (Figure 1g). One critical difference is that every bivariate CDFs 
can be defined in four different ways by summing to one of four different quadrants (see Section 2.2, Fig-
ure 1g). We follow the approach of Peacock (1983) where the maximum difference between two bivariate 
CDFs is calculated four times, each time summing to a different quadrant, calculating the K-S Test D value 
and reporting the maximum absolute difference of all four calculations as D2D. The Kuiper Test is converted 
to 2D in a similar fashion as the sum of the maximum differences between CDF1 and CDF2 and vice versa:
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      2 max CDF1 CDF2 max CDF2 CDF1 ,DV (20)

where like the 2D K-S Test, it considers all four possible quadrant sums. For similar reasons as outlined 
above, p-values are not considered here for the K-S and Kuiper tests, although they have been developed for 
the K-S Test (Peacock, 1983).

3.3. Multidimensional Scaling

Pairwise quantitative comparison matrices can be visualized using multidimensional scaling (MDS) in a 
similar fashion as is done for traditional 1D age distributions (e.g., Vermeesch, 2013). MDS facilitates visu-
alization of pairwise comparison matrices by transforming sample dissimilarity into distance on a Cartesian 
plot in N dimensions. Similarity, Likeness, and Cross-correlation all yield “similarity” matrices, which can 
be converted into sample dissimilarity by subtracting from 1 (e.g., 1−S2D). Both the K-S Test and Kuiper Test 
produce sample dissimilarity. Transformation of dissimilarity to distance in MDS is accomplished through 
iterative rearrangement in Cartesian space, seeking to minimize the misfit (termed “stress”) between the 
distance and disparity (where disparity is a linear transformation of distance in the case of metric MDS 
or the ordination in the case of nonmetric MDS). Stress is normalized by the sum of the squares of the 
interpoint distances. Low stress (e.g., <0.1) indicates a reasonable transformation (Kruskal,  1964; Ver-
meesch, 2013). One of the most commonly used methods to accomplish this task is Kruskal's method of 
nonmetric MDS (Kruskal, 1964). Here, a pairwise dissimilarity matrix is converted to distance through iso-
tonic regression, that is, fitting a monotonically increasing line through the ranked matrix values, such that 
the Euclidean distances have approximately the same rank order as the corresponding dissimilarities; the 
transformed values are disparities. Results are represented as points in Cartesian space with greater distance 
corresponding to greater dissimilarity.

4. Application to a Global Compilation of Zircon U-Pb and Hf Data
We applied 1D and 2D quantitative comparison methods to the global zircon U-Pb and Hf data compi-
lation of Puetz and Condie (2019). We used a modified version of this data compilation that was parsed 
geographically based on Paleozoic suture locations from Domeier and Torsvik (2014) that includes eight 
continental landmasses: Africa, Antarctica, Australia, Asia, Baltica, North America, Peri-Gondwana, and 
South America (Figure 3). Africa includes the Arabian Peninsula. Asia was divided along the Paleo-Tethys 
suture between Peri-Gondwana and surrounding Eurasian terranes (Metcalfe, 2013), and includes Siberia, 
Tarim, North China, South China, and terranes in Central Asia. Australia includes the southeastern Asian 
terranes. Baltica is separated from Asia along the eastern Ural Mountains. Baltica and Asia were separated 
from Peri-Gondwana terranes along the Paleo-Tethys suture. North America is separated from Peri-Gond-
wana terranes along the Iapetan suture. India is included with Peri-Gondwana. South America includes the 
Peri-Gondwana terranes of Mexico.

After grouping the data geographically, the global compilation was subdivided into its igneous zircon and 
detrital zircon contributions, and then further subdivided into univariate contributions of U-Pb data only 
(n = 767,660) and bivariate contributions of paired U-Pb and Hf data (n = 114,311). This parsing produced 
32 groups of data: two primary data sets of univariate (U-Pb) and bivariate (U-Pb and Hf) data, each with 
eight spatial groups of igneous zircon and detrital zircon data.

Hf isotope geochemical data are reported in ε units in reference to the chondritic uniform reservoir (CHUR) 
and expressed as εHfT where

   










 
  

   
   

 

1

1
Hf,CHUR 0 Lu,CHUR 0

176Hf 176Lu
177Hf 177HfHfT 1 10,000,

T

T

e

C C e
 (21)
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where 176Hf/177Hf and 176Lu/177Hf are measured isotopic values of zircon; λ is the 176Lu β-decay rate of 
1.867 × 10−5 Myr−1 (Söderlund et al., 2004); CHf,CHUR(0) and CLu,CHUR(0) are present day 176Hf/177Hf and 
176Lu/177Hf CHUR of 0.282772 and 0.0332, respectively (Griffin et al., 2000); and T is the zircon U-Pb crystal-
lization age. This represents parts per 10,000 deviation from CHUR at the time of zircon crystallization (T). 
The depleted mantle array is calculated using an initial 176Hf/177Hf value of 0.283225 and initial 176Lu/177Hf 
value of 0.0383 (Vervoort & Blichert-Toft, 1999).

Below, we will first demonstrate the 2D calculations by working through a simple example using the igne-
ous and detrital zircon bivariate εHfT data. Then we perform sensitivity testing of the individual quantita-
tive measures in 1D and 2D using the zircon εHfT considered in its univariate (i.e., U-Pb only) and bivariate 
(i.e., U-Pb and Hf) components. Finally, we use the complete data sets of univariate U-Pb data (n = 767,660) 
and bivariate εHfT data (n = 114,311) to address two example geologic questions: (1) How similar are the 
detrital zircon and igneous zircon geochronological and geochemical records? (2) Is the Ediacaran-Cambri-
an εHfT negative isotopic excursion a global signal?
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Figure 3. Spatial distribution of (a) igneous zircon and (b) detrital zircon paired U-Pb and initial Hf (εHfT) compiled 
in Puetz and Condie (2019). Sample locations are separated into paleocontinents based on Paleozoic terrane sutures 
from Domeier and Torsvik (2014).
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4.1. Simple Example

To demonstrate how the 2D quantitative comparison measures are calculated, let us consider two data sets, 
the igneous zircon and detrital zircon εHfT data from Africa. We first generate two bivariate KDEs that 
range from 0 to 4,400 Ma on the x-axis and −40 to 20 εHfT on the y-axis with extremely coarse discretization 
over a 4-by-4 grid where

 
 
   
 
  

0.0041 0.0025 0.0000 0.0000
0.0664 0.0200 0.0093 0.0013
0.1409 0.1682 0.2412 0.0823
0.2386 0.0153 0.0089 0.0011

F 

and

 
 
   
 
  

0.0040 0.0003 0.0001 0.0000
0.0531 0.0148 0.0100 0.0008

.
0.3110 0.1535 0.1616 0.0529
0.1977 0.0337 0.0057 0.0008

G 

S2D is calculated first with an intermediate step that yields a matrix of values where S2D before summing is

 
 
   
 
  

2 ,intermediate

0.0041 0.0008 0.0000 0.0000
0.0594 0.0172 0.0096 0.0010

.
0.2093 0.1607 0.1974 0.0659
0.2172 0.0227 0.0071 0.0010

DS 

which when summed yields S2D of 0.97. Mismatch in 2D also contains an intermediate step where M2D of F 
and G (before summing) is

 
 
   
 
  

2 ,intermediate

0.0000 0.0011 0.0000 0.0000
0.0066 0.0026 0.0026 0.0002

.
0.0850 0.0073 0.0398 0.0147
0.0204 0.0092 0.0016 0.0001

DM 

Summing this matrix produces M2D of 0.19; subtracting from 1 (i.e., plugging into Equation  17) yields 
L2D = 0.81.

Calculating the Cross-correlation coefficient of F and G requires vectorizing (i.e., reshaping) each matrix 
into 1D arrays where

F
vectorized

 


0 0041 0 0664 0 1409 0 2386 0 0025 0 0823 0 0011. . . . . . .  

and

G
vectorized

 


0 0040 0 0531 0 3110 0 1977 0 0003 0 0529 0 0008. . . . . . .  . 

Application of Equation 18 yields a Cross-correlation coefficient of 0.71.

The S2D and L2D measures can also be calculated by vectorizing F and G and will produce an identical result 
to the examples shown above. However, while vectorizing is a slightly more computationally efficient way 
to calculate S2D and L2D, there is the added benefit of the intermediate steps of calculating S2D and M2D which 
can be plotted to show where F and G are similar (Figure 2h) or dissimilar (Figure 2i), respectively.

Following from the same example of coarsely gridded igneous and detrital zircon εHfT data from Africa, 
bivariate CDFs that sum to 1 in the first quadrant of F and G are
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0.4499 0.6560 0.9154 1.0000
0.4459 0.6494 0.9088 0.9934
0.3795 0.5630 0.8131 0.8964
0.2386 0.2539 0.2628 0.2639

F 

and

 
 
   
 
  

0.5658 0.7681 0.9455 1.0000
0.5618 0.7638 0.9411 0.9956

.
0.5086 0.6959 0.8632 0.9169
0.1977 0.2314 0.2371 0.2379

G 

Taking the difference between F and G gives

   
           
 
  

0.1158 0.1121 0.0301 0.0000
0.1159 0.1145 0.0324 0.0022

,
0.1292 0.1329 0.0501 0.0204

0.0409 0.0225 0.0258 0.0260

F G 

and vice versa gives

 
 
    
 
     

0.1158 0.1121 0.0301 0.0000
0.1159 0.1145 0.0324 0.0022

.
0.1292 0.1329 0.0501 0.0204

0.0409 0.0225 0.0258 0.0260

G F 

Following Equation 19, the maximum of the latter two matrices is the K-S Test D2D value of 0.13. Following 
Equation 20, the Kuiper Test V2D value is the sum of the maximum of each of the latter two matrices and 
produces a result of 0.17. Again note, because there are three alternate quadrants, this value is not neces-
sarily the largest, and hence may not the appropriate maximum difference between the bivariate CDFs 
(Peacock, 1983). For example, if we sum to the corner of the fourth quadrant, F and G would be

 
 
   
 
  

0.0041 0.0066 0.0066 0.0066
0.0705 0.0930 0.1023 0.1036
0.2114 0.4021 0.6525 0.7361
0.4499 0.6560 0.9154 1.0000

F 

and

 
 
   
 
  

0.0040 0.0043 0.0044 0.0044
0.0572 0.0723 0.0823 0.0831

.
0.3681 0.5367 0.7084 0.7621
0.5658 0.7681 0.9455 1.0000

G 

In this scenario, D2D = 0.16, and V2D is the same as before, 0.17. To reiterate, to find the maximum difference 
between two bivariate CDFs, four separate K-S Tests and Kuiper Tests must be done with the largest value 
reported based on bivariate CDFs that sum to 1 in each of the four quadrants (Peacock, 1983).

4.2. Sensitivity Testing

We use the empirical data from the global zircon U-Pb and Hf compilation of Puetz and Condie (2019) 
to test the sensitivity of the 1D and 2D quantitative measures. From the 114,313 pairs of εHfT data, two 
samples comprising n = 50,000 each were selected without replacement. We then randomly selected sets 
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of n = 100, 200 … 1,500 from each data set 10 times and compared them using each quantitative measure. 
Results are reported as median ±1σ standard deviation for each sample size, n (Figure 4). For simplicity, the 
1D and 2D tests are based on the same data two samples, with univariate distributions constructed from the 
bivariate data without consideration of the Hf component.

We conducted four tests in 1D and 2D. Our initial test serves as a control for varying two parameters: kernel 
bandwidth (i.e., width of individual Gaussian curves used for each data point) and discretization interval 
(i.e., spacing in the x and y directions). The control test used kernel bandwidths of 20 Myr and 1 ε unit and 
discretization intervals of 1 Myr for univariate distributions (Figure 4a) and a 512 × 512 grid for bivariate 
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Figure 4. Sensitivity testing of 1D and 2D quantitative comparison methods. (a)–(b) Control test incorporating kernel bandwidths of 20 Myr and 1 ε unit 
and discretization intervals of (a) 1 Myr for univariate distributions and (b) a 512 × 512 grid for bivariate distributions. (c)–(d) Test results with larger kernel 
bandwidths of 50 Myr and 4 ε units. (e)–(f) Test results with smaller kernel bandwidths of 10 Myr and 0.5 ε units. (g)–(h) Coarse discretization interval test 
results with (g) 100 Myr for univariate distributions and (h) a 32 × 32 grid for bivariate distributions.
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distributions (Figure 4b). We vary one parameter at a time for the following tests. The second test includes 
larger kernel bandwidths of 50 Myr and 4 ε units (Figures 4c–4d). The third test includes smaller kernel 
bandwidths of 10 Myr and 0.5 ε units (Figures 4e–4f). The fourth test incorporates very coarse discretization 
intervals of 100 Myr for univariate distributions (Figure 4g) and a 32 × 32 grid for bivariate distributions 
(Figure 4h).

Results show common features among all tests. In all cases, and both for 1D and 2D, increased sample size 
produces more similar results shown by increasing Similarity, Likeness, and Cross-correlation values, and 
decreasing K-S Test and Kuiper Test values (Figure 4). As expected, the K-S and Kuiper tests do not show 
any change in 1D because the varied parameters do not change how univariate CDFs are constructed; in 2D 
the results do depend on the parameterizations tested (because the bivariate CDFs are calculated from the 
bivariate KDEs) and show no major changes among the four tests (Figure 4).

Another common feature among all results is the relative sensitivity to sample size (i.e., the measure that 
shows the largest range). Cross-correlation shows the greatest impact of sample size for both univariate and 
bivariate data (Figure 4). Similarity and Likeness have a wider range of sensitivity to sample size (i.e., covers 
a wider range between 0 and 1) in 2D than in 1D, whereas Cross-correlation has a wider range in 1D; the 
K-S Test and Kuiper Test show lower sensitivity than the other measures and are roughly equally sensitive 
in both 1D and 2D. Likeness is more sensitive than Similarity in 1D (Figures 4a, 4c and 4e, 4g) and roughly 
equally sensitive in 2D (Figures 4b, 4d and 4f, 4h). The K-S Test and Kuiper Test similarly show the lowest 
range of sensitivity (Figure 4).

Although there are many common features among the results, the key controlling parameter appears to be 
kernel size. As discussed by Vermeech (2018) for 1D quantitative comparisons, larger kernel bandwidths 
produce more similar results, particularly for Likeness and Cross-correlation, whereas smaller kernel band-
widths produce less similar results; the latter has a more dramatic effect on the resulting systematic shift 
toward lower similarity. The discretization interval results (Figures 4g–4h) show little effect compared to the 
control test (Figures 4a–4b) with the exception that Cross-correlation becomes more similar more quickly 
with the coarse discretization than in the control case. The K-S and Kuiper tests appear to converge in 2D 
for the tests incorporating a large kernel (Figures 4c–4d) and coarse discretization (Figures 4g–4h). De-
spite these differences in parameterization, the quantitative comparisons are largely consistent regardless 
of which measure is used (Figure 4).

4.3. How Similar are the Detrital Zircon and Igneous Zircon Records?

The first geologic application is a comparison of igneous and detrital zircon data for the complete data sets 
of univariate U-Pb data (n = 767,660) and bivariate εHfT data (n = 114,311) over the full temporal range 
(i.e., 4,400 to 0 Ma) of the data compilation of Puetz and Condie (2019). The goal is to test how represent-
ative the detrital zircon record is of the igneous zircon record for major continental landmasses (Figure 3). 
Figure 5 shows each of the 32 groups of data described above plotted from 4,400 to 0 Ma with univariate 
zircon U-Pb age distributions shown as black lines and bivariate εHfT distributions shown as colored in-
tensity plots. In general, the density modes of univariate distributions (peaks of black lines) and bivariate 
distributions (warm colors) occur over similar time intervals.

Quantitative comparison results are consistent with visual assessment for both univariate and bivariate dis-
tributions. The 16 groups of each of the two major groups of data (univariate and bivariate) were compared 
in a pairwise fashion using each of the five quantitative methods described above. Simplified results of the 
quantitative comparisons are individually color-coded based in Figure 6 with cooler colors indicating more 
similar density distributions and warmer colors indicating less similar density distributions (complete pair-
wise comparison matrices for each test are reported in the Supporting Information). Results show consist-
ent patterns among all metrics (Figure 6). In finer detail, detrital zircon distributions are most similar to the 
igneous zircon distributions of their respective landmasses, for both univariate (Figure 6, left column) and 
bivariate (Figure 6, right column) data groups for KDE-based measures (Similarity, Likeness, and Cross-cor-
relation). Of the 48 individual comparisons of bivariate KDEs (i.e., eight landmasses and three measures in 
1D and 2D), only Cross-correlation of Baltica and Peri-Gondwana igneous and detrital zircon εHfT in 2D 
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are not the most similar. In contrast, fewer than half (15 of 32) of the detrital zircon distributions are most 
similar to their respective landmasses for CDF-based K-S and Kuiper tests, both in 1D and 2D (Figure 6).

Converting the complete comparison matrices (Supporting Information) into MDS plots produces a spatial 
representation of how the different paleocontinent distributions compare. In MDS plots, similar density dis-
tributions plot closer to one another and dissimilar distributions plot farther apart (Figure 7). MDS results 
based on 1D and 2D quantitative comparison methods show similar patterns between detrital zircon and ig-
neous zircon for most continental landmasses. The major exceptions are Antarctica and Baltica (Figure 7). 
Antarctica bivariate igneous data are missing a prominent ∼1,000 Ma mode seen in the detrital bivariate 
data (Figure  5b). Baltica has discrepancies in both 1D and 2D. The Baltica igneous zircon U-Pb data is 
dominated by two age modes in the Archean and Paleoproterozoic, and the detrital distribution is complex 
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Figure 5. Global compilation of zircon U-Pb and εHfT data from Puetz and Condie (2019) separated into continental landmasses (a) Africa; (b) Antarctica; 
(c) Asia; (d) Australia, (e) Baltica; (f) North America, (g) Peri-Gondwana, (h) South America with igneous (upper panels) and detrital (lower panels) data 
for each group. Dashed lines are the depleted mantle array, solid horizontal lines are bulk silicate Earth chonditic reservoir, red arrows are the average crustal 
evolution (see Section 4 for details). KDEs were constructed with set kernel bandwidths of 40 Myr (x-axis) and 2 ε units (y-axis). Bivariate KDEs are clipped, 
that is, show white space below 99% from peak density.
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and multimodal with significant Phanerozoic age contributions (Figure  5e). Baltica also shows a major 
∼1,000 Ma mode in the bivariate detrital distribution that is absent in the igneous distribution (Figure 5e).

Continental crust is continually reworked by tectonic and sedimentary processes. Despite this, the igne-
ous zircon record appears to be retained in the detrital record for individual paleocontinental landmasses 
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Figure 6. Simplified quantitative comparison results of detrital versus igneous zircon data for continental landmasses 
using data in Figure 5. Complete pairwise comparison matrices are presented in the Supporting Information. Each 
matrix is separately conditionally formatted with cooler colors representing more similar distributions and warmer 
colors representing less similar distributions. Note that all matrices show similar patterns both for 1D and 2D 
quantitative comparison methods. Also note that the most similar distributions between detrital and igneous data are 
for common continental landmasses for quantitative measures that use kernel density estimates (Similarity, Likeness, 
and Cross-correlation). AFR, Africa. ANT, Antarctica. ASA, Asia. AUS, Australia. BAL, Baltica. NAM, North America. 
PGT, Peri-Gondwana. SAM, South America.
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(Figures 5–7). Although there are commonly shared age and geochemical signals during supercontinent 
formation when major landmasses are adjoined due to common orogenic belts shedding detritus onto adja-
cent landmasses, such as the megafans of Gondwana (Squire et al., 2006), the detrital record is dominated 
by the bedrock igneous signal of the associated continent. Nevertheless, mixing of different sediment source 
terranes may exacerbate the dispersion of the detrital bivariate KDEs (Figure 5) due to the near modern 
paleogeographic demarcations of continental boundaries based on Paleozoic sutures used here, which do 
not account for earlier paleogeographic reconstructions.

4.4. Is the Ediacaran-Cambrian Hf Negative Isotopic Excursion a Global Signal?

The second application of the quantitative measures to the global zircon U-Pb and Hf data compilation is on 
a narrower time interval over the Ediacaran-Cambrian (635–485 Ma). We chose this interval because it has 
been the focus of research on Earth models invoking provocative hypotheses to explain the extreme isotopic 
excursion to very negative εHfT values. Such models posit that the excursion to negative εHfT values (Fig-
ure 5) is the result of a global process such as extreme erosion during Snowball Earth and subsequent sub-
duction of sediments generated from decreasing the continental freeboard by 1 to 3 km (Keller et al., 2019), 
or alternatively due to a fundamental change in plate tectonic style (Sobolev & Brown, 2019; Stern, 2008).

Visual assessment of results from the eight continental landmasses shows that univariate zircon U-Pb dis-
tributions are generally nonunique and that bivariate εHfT distributions are highly variable (Figure 8). Al-
though density modes for univariate and bivariate distributions usually occur over similar time intervals, 
and despite the univariate data sets being much larger, there is only minor variability in univariate space 
over the 150  Myr Ediacaran-Cambrian time interval, especially for detrital data (Figure  8). In contrast, 
bivariate εHfT distributions reveal a wealth of information with major density modes that are variable in 
time, space (i.e., continental landmass), and geochemical deviation from depleted mantle (i.e., more pos-
itive “juvenile” or more negative “evolved” εHfT values). The isotopic excursion to very negative, evolved 
εHfT values is largely absent in all igneous distributions but is prominent in some detrital records (e.g., 
compare igneous and detrital records for Australia Figure 8d and the Peri-Gondwanan terranes Figure 8g). 
This could mean that either the sources of these zircons have not been discovered, or they were obliterated 
and effectively erased to all but the detrital record due to erosion, or both. At the same time, very negative 
εHfT values are not seen in all continental detrital zircon records, challenging the notion that it is a global 
signal. For example, εHfT values <−20 are largely absent from Baltica and North America (Figures 8e–8f).

A major control on the bivariate εHfT distributions is sample size. Although the igneous and detrital data 
groups show many similarities for associated paleocontinents, there are major discrepancies that are likely 
due to small sample sizes. For example, Australia, Baltica, and North America have very small sample sizes 
for the igneous data groups (Figures 8d–8f). For this reason, we will focus on quantitative comparison of 
the detrital records only.

Quantitative comparison of univariate and bivariate detrital data yields results that are consistent with 
visual assessments. All results are shown as MDS plots (Figure 9). The 1D comparisons, although broadly 
consistent with one another, reveal different patterns than the bivariate comparisons. The major differenc-
es are the relative similarity of continental masses associated with the formation of Gondwana (Africa, 
Antarctica, Australia, Peri-Gondwana, and South America) and those interpreted to be unassociated with 
Gondwana (Asia, Baltica, and North America; Goscombe et al., 2019, 2020, Figures 10a–10b). In particular, 
although most researchers agree that Baltica and North America were not involved in Gondwana's forma-
tion, most of the 1D comparisons show that they are similar to Australia and South America (Figures 9 and 
10a–10b; e.g., Dalla Salda, 1992; Dalziel et al., 1994; Goscombe et al., 2019, 2020; cf.; Squire et al., 2006).

A major control on the differences between Gondwanan and non-Gondwanan continental landmasses is 
not primarily the age modes (Figure 9, left column), but rather differences in εHfT, and specifically the lack 
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Figure 7. Multidimensional scaling plots based on quantitative comparison of data presented in Figure 5 for univariate zircon U-Pb distributions with 1D 
quantitative comparisons (left column) and bivariate zircon εHfT distributions with 2D quantitative comparisons (right column). AFR, Africa. ANT, Antarctica. 
ASA, Asia. AUS, Australia. BAL, Baltica. NAM, North America. PGT, Peri-Gondwana. SAM, South America. Ig, igneous zircon. DZ, detrital zircon. 
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of a major εHfT isotopic pulldown in non-Gondwanan distributions (Figure 8). This is seen in composite 
bivariate KDEs of Gondwanan and non-Gondwanan data (Figures 10c–10d). Calculating the intermediate 
Similarity step for comparison of the Gondwanan and non-Gondwanan data shows where these distribu-
tions are similar. Plotting the intermediate values as bivariate KDEs shows that they are not similar for 
εHfT less than −25 based on intermediate S2D,intermediate (Figure 10e). Accordingly, the negative εHfT isotopic 
excursion can be interpreted as a tectonic signal resulting from the unique paleogeography before and dur-
ing the amalgamation of Gondwana, rather than a global process related to Snowball Earth erosion (Keller 
et al., 2019) a fundamental shift in plate tectonic regime (Sobolev & Brown, 2019; Stern, 2008), or any other 
wholesale global phenomenon unrelated to Gondwana.
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Figure 8. Ediacaran-Cambrian (635–485 Ma) subset of zircon U-Pb and eHfT data from Puetz and Condie (2019) separated into continental landmasses (a) 
Africa; (b) Antarctica; (c) Asia; (d) Australia, MAF; (e) Baltica; (f) North America, (g) Peri-Gondwana, (h) South America with igneous (upper panels) and 
detrital (lower panels) data for each group. Dashed lines are the depleted mantle array, solid horizontal lines are bulk silicate Earth chonditic reservoir, red 
arrows are the average crustal evolution (see Section 4 for details). KDEs were constructed with set kernel bandwidths of 15 Myr (x-axis) and 1 ε unit (y-axis). 
Bivariate kernel density estimates are clipped, that is, show white space below 99% from peak density.
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5. Discussion
The data visualization and quantitative comparison methods discussed here have both strengths and weak-
nesses. For data visualization, bivariate KDEs facilitate identification of data clusters and can aid in objective 
comparison of complex bivariate data density. While bivariate CDFs are useful for quantitative comparison, 
they are perhaps less intuitive for visualizing data density compared to bivariate KDEs for common prob-
lems of detrital geochronology and geochemistry. One potential weakness to the methods discussed here is 
that neither bivariate KDEs nor CDFs incorporate sample uncertainty (cf., Vermeesch, 2012 for univariate 
zircon U-Pb age distributions). That said, it is possible to incorporate analytical uncertainty by altering the 
method to use a different Gaussian scaling matrix based on sample uncertainty for every data point in lieu 
of a single Gaussian scaling matrix application following conversion of data via discrete cosine transform 
(Ahmed et al., 1974); however, this is likely to be more computationally expensive (see Section 2.2). Another 
alternative is to convert Lu-Hf data to mantle extraction model ages that represent the timing of extraction 
from the depleted mantle (TDM; Andersen et al., 2018). This approach reduces the bivariate data into two 
sets of univariate data (i.e., U-Pb age and TDM) which can be plotted with uncertainty envelopes about 
separate CDFs (Andersen et al., 2018, their Figures 2 and 3). However, while the addition of uncertainty to 
univariate CDF curves is useful, the use of TDMs is problematic because they typically assume a one-stage 
melting model with no partial melting of older crust in a migmatite or mantle-assimilation-storage-ho-
mogenization (MASH) zone. Furthermore, the reduction of bivariate data to individual univariate data sets 
fundamentally decouples the two sets of information. The 2D quantitative methods outlined here allow for 
complete freedom in bivariate space and the preservation of coupled bivariate information.

Two-dimensional methods behave in a similar fashion to their one-dimensional counterparts in term of 
sensitivity and consistency regardless of parameterization (i.e., kernel bandwidth, discretization interval). It 
is important to remember that all 2D quantitative comparison results are relative, as in the 1D case (Saylor 
& Sundell, 2016). For these reasons, it is good practice to test and compare all five quantitative methods to 
check for consistency among the different methods for geological interpretations. As shown in the sensitivi-
ty testing, although the results are relative, they are consistent in that they are always systematically shifted 
with differing parameterizations (Figure 4) and thus appear to be robust measures of similarity and dissim-
ilarity for both univariate and bivariate distributions. In practice, if one or more methods gives a drastically 
different result, particularly between KDE-based and CDF-based measures, then the results are likely not 
as reliable; the most robust quantitative assessments should be broadly consistent regardless of the meth-
od used. More importantly, quantitative comparison results should always be thoroughly scrutinized by 
comparison to independent geologic observations and interpretations (e.g., stratigraphic stacking patterns, 
cross-cutting relationships). As with all model-based results, they are ancillary to real-world observations 
and should only be applied with a proper characterization and understanding of geologic context.

The 2D quantitative comparison methods of bivariate KDEs and CDFs as applied to the complete temporal 
εHfT compilation highlights weaknesses in the K-S and Kuiper tests, both for univariate and bivariate data. 
Visual assessment shows that univariate U-Pb modes and bivariate εHfT modes generally align for igneous 
zircon and detrital zircon records of individual landmasses (Figure 5). All measures show similar trends in 
1D and 2D for detrital and igneous zircon records (Figure 6 and Supporting Information). However, results 
for KDE-based measures (Similarity, Likeness, Cross-correlation) are more consistent (only 46 out of 48) 
in that they show the detrital zircon records are most similar to the igneous records of their respective con-
tinental landmass (Figure 5). On the other hand, the K-S Test and Kuiper Test are much less consistent in 
both 1D and 2D, with only 15 of 32 comparisons showing the igneous and detrital records are the most sim-
ilar for common landmasses. We attribute the discrepancies in CDF-based measures to roughly equal verti-
cal separation (i.e., D or V values) between CDFs with modes at similar intervals, even if there is no overlap 
between the modes, which results in lower sensitivity to the details of density distributions (Figure 4).

The geological applications of 2D quantitative comparison methods presented here are consistent with 
many of the proof-of-concept results shown in Figure 1 and the sensitivity testing results shown in Figure 4. 
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Figure 9. Multidimensional scaling plots based on quantitative comparison of data presented in Figure 8 for univariate zircon U-Pb distributions with 1D 
quantitative comparisons (left column) and bivariate zircon εHfT distributions with 2D quantitative comparisons (right column). AFR, Africa. ANT, Antarctica. 
ASA, Asia. AUS, Australia. BAL, Baltica. NAM, North America. PGT, Peri-Gondwana. SAM, South America.
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Figure 10. (a) Color-coded pairwise comparison matrices based on 1D (left) and 2D (right) Similarity from Figure 9. AFR, Africa. ANT, Antarctica. 
ASA, Asia. AUS, Australia. BAL, Baltica. NAM, North America. PGT, Peri-Gondwana. SAM, South America. (b) Ediacaran-Cambrian paleogeographic 
reconstruction of Gondwana with regional orogenic belts, cratons, and suture locations from Goscombe et al. (2019). (c) Composite Gondwanan terranes 
(Africa + Antarctica + Australia + Peri-Gondwana + South America). (d) Composite non-Gondwanan terranes (Asia + Baltica + North America). (e) 
Intermediate step in calculating Similarity before summing which shows where the two composite εHfT distributions in parts c and d are similar. Bivariate 
KDEs in parts (c)–(e) were constructed with set kernel bandwidths of 5 Myr (x-axis) and 1 ε unit (y-axis).
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For example, the 2D metrics behave similarly to their 1D counterparts, as shown with the comparison of 
the complete detrital and igneous zircon records (i.e., 4,400–0 Ma; Figures 5–7). Perhaps more interestingly, 
the 2D approach to the Ediacaran-Cambrian data reveals dramatically different results compared to the 1D 
quantitative assessments (Figures 8–10). The latter result is by design and demonstrates with empirical data 
how univariate age distributions can be nonunique and can potentially produce misleading results. These 
results highlight the importance of thoroughly scrutinizing any model-based results to ensure that they are 
appropriately interpreted in geologic context.

The 2D quantitative comparison methods hold promise for detrital applications where univariate zircon 
U-Pb age distributions are nonunique due to overlapping age groups. Here we have demonstrated the utility 
of 2D quantitative comparison methods using paired zircon U-Pb and Hf data, as it has not only become 
common in sediment provenance studies (e.g., Gehrels & Pecha, 2014) but it has also become a major lens 
to interpret secular changes in crustal growth, global erosion, and changes in tectonic styles (e.g., Belousova 
et al., 2010). The future is bright for 2D quantitative assessment, as incorporating a second dimension of 
information for detrital minerals is becoming more common using thermochronology (Reiners et al., 2005; 
Saylor et al., 2013), trace element geochemistry (e.g., Anfinson et al., 2016; McKenzie et al., 2018), as well as 
physical characteristics of zircon such as grain roundness (Decou et al., 2013; Sundell et al., 2018) or grain 
size (Leary et al., 2020). Moreover, the 2D methods described above are not limited to detrital applications. 
They can be used to compare any bivariate data that can appropriately be visualized in terms of density 
and represented as a bivariate KDE. Similar to 1D methods of quantitative comparison, 2D methods have 
major applications in exploratory research, and future work may involve implementation of mixture model 
approaches currently implemented for univariate distributions (e.g., Galbraith & Green, 1990; Sambridge & 
Compston, 1994; Sundell & Saylor, 2017). As the study of Earth Science continues head on into the realm 
of “big data” (e.g., Guo, 2017; Sellars et al., 2013; Vermeesch & Garzanti, 2015), and geochronology and 
geochemistry data aggregation initiatives progress (e.g., Quinn et al., 2020), development of tools for explor-
atory data analysis in the Earth Sciences is seemingly more important than ever.

6. DZstats2D Software
We implemented the 2D quantitative methods into a new MATLAB-based program, DZstats2D. The pro-
gram reads sample spreadsheets containing paired columns of bivariate data. Although DZstats2D is by de-
fault parameterized to plot and compare age and Hf data, it is capable of comparing any bivariate data that 
can be meaningfully visualized in bivariate sample space as a KDE. The DZstats2D code is open source and 
has been deployed as stand-alone desktop applications for macOS and Windows. The code, applications, 
and all data discussed in this contribution are available at on GitHub at https://github.com/kurtsundell/
DZstats2D. An example step-by-step guide to exploratory analysis is included in the DZstats2D software 
user manual.

7. Conclusions
We present 2D quantitative comparison methods applied to zircon U-Pb and Hf data. The 2D measures are 
simple mathematical extensions of their 1D counterparts commonly applied to univariate detrital zircon 
U-Pb age distributions: Similarity, Likeness, and Cross-correlation of KDEs and K-S Test and Kuiper Test of 
CDFs. Sensitivity testing shows that the 2D measures behave in a similar fashion to their 1D counterparts 
in terms of sensitivity; parameterization such as kernel bandwidth and discretization interval have only 
a minor effect on results by systematically shifting all measures, which suggests that the 2D quantitative 
methods are robust. Application to a global compilation of U-Pb and Hf data parsed geographically into 
major continental landmasses shows that detrital zircon records are most similar to the igneous zircon 
records from the same landmass, suggesting that the detrital zircon record provides a faithful representa-
tion of the igneous record. Comparison of Ediacaran-Cambrian records reveals that consideration of only 
univariate zircon U-Pb ages for 1D quantitative comparison produces misleading results. Consideration 
of a second data dimension shows that there is considerable variability in the Hf data and that samples 
fall into Gondwanan and non-Gondwanan groups. The latter also highlights that the Ediacaran-Cambrian 
isotopic excursion to evolved values is likely not a global signal, but rather a tectonic signal associated only 
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with continental fragments involved in the amalgamation of Gondwana. The methods presented in this 
manuscript are implemented in a new MATLAB-based graphical user interface, DZstats2D, available as 
open-source code and as standalone applications for macOS and Windows.

Data Availability Statement
Data used in this research were originally compiled and are available from Puetz and Condie (2019) and 
are also available at https://zenodo.org/badge/latestdoi/313485301, DOI: http://doi.org/10.5281/zeno-
do.4460336, along with the latest version of DZstats2D.

References
Ahmed, N., Natarajan, T., & Rao, K. R. (1974). Discrete cosine transform. IEEE Transactions on Computers, 100, 90–93.
Amidon, W. H., Burbank, D. W., & Gehrels, G. E. (2005). Construction of detrital mineral populations: Insights from mixing of U–Pb zircon 

ages in Himalayan rivers. Basin Research, 17(4), 463–485. https://doi.org/10.1111/bre.12245
Andersen, T. (2014). The detrital zircon record: Supercontinents, parallel evolution—Or coincidence? Precambrian Research, 244, 279–287.
Andersen, T., Kristoffersen, M., & Elburg, M. A. (2018). Visualizing, interpreting and comparing detrital zircon age and Hf isotope data in 

basin analysis–A graphical approach. Basin Research, 30(1), 132–147.
Anfinson, O. A., Malusà, M. G., Ottria, G., Dafov, L. N., & Stockli, D. F. (2016). Tracking coarse-grained gravity flows by LASS-ICP-MS 

depth-profiling of detrital zircon (Aveto Formation, Adriatic foredeep, Italy). Marine and Petroleum Geology, 77, 1163–1176.
Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S. Y., & Pearson, N. J. (2010). The growth of the continental crust: 

Constraints from zircon Hf-isotope data. Lithos, 119(3–4), 457–466. https://doi.org/10.1016/j.lithos.2010.07.024
Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations defined by their probability distributions. Bul-

letin of the Calcutta Mathematical Society, 35, 99–109.
Böhme, M., Spassov, N., Ebner, M., Geraads, D., Hristova, L., Kirscher, U., et al. (2017). Messinian age and savannah environment of the 

possible hominin Graecopithecus from Europe. PloS One, 12. e0177347. https://doi.org/10.1371/journal.pone.0177347
Botev, Z. I., Grotowski, J. F., & Kroese, D. P. (2010). Kernel density estimation via diffusion. Annals of Statistics, 38, 2916–2957. https://doi.

org/10.1214/10-AOS799
Cherniak, D. J., Hanchar, J. M., & Watson, E. B. (1997). Diffusion of tetravalent cations in zircon. Contributions to Mineralogy and Petrology, 

127, 383–390.
Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences, New York, NY: Academic Press New York.
Dalla Salda, L. H., Dalziel, I. W., Cingolani, C. A., & Varela, R. (1992). Did the Taconic Appalachians continue into southern South Amer-

ica? Geology, 20, 1059–1062.
Dalziel, I. W. (1994). Precambrian Scotland as a Laurentia-Gondwana link: Origin and significance of cratonic promontories. Geology, 22, 

589–592.
Decou, A., Von Eynatten, H., Dunkl, I., Frei, D., & Wörner, G. (2013). Late Eocene to Early Miocene Andean uplift inferred from detrital 

zircon fission track and U–Pb dating of Cenozoic forearc sediments (15–18 S). Journal of South American Earth Sciences, 45, 6–23. 
https://doi.org/10.1016/j.jsames.2013.02.003

Dickinson, W. R., & Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against 
a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013

Dodson, M. H., Compston, W., Williams, I. S., & Wilson, J. F. (1988). A search for ancient detrital zircons in Zimbabwean sediments. Jour-
nal of the Geological Society, 145, 977–983.

Domeier, M., & Torsvik, T. H. (2014). Plate tectonics in the late Paleozoic. Geoscience Frontiers, 5, 303–350. https://doi.org/10.1016/j.
gsf.2014.01.002

Galbraith, R. F., & Green, P. F. (1990). Estimating the component ages in a finite mixture. International Journal of Radiation Applications 
and Instrumentation, 17, 197–206.

Gehrels, G., & Pecha, M. (2014). Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin 
strata of western North America. Geosphere, 10(1), 49–65. https://doi.org/10.1130/ges00889.1

Gehrels, G. E. (2000). Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California. 
Special Papers – Geological Society of America, 347, 1–17.

Gehrels, G. E., Dickinson, W. R., Ross, G. M., Stewart, J. H., & Howell, D. G. (1995). Detrital zircon reference for Cambrian to Triassic 
miogeoclinal strata of western North America. Geology, 23, 831–834.

Goscombe, B., Foster, D. A., Blewett, R., Czarnota, K., Wade, B., Groenewald, B., & Gray, D. (2019). Neoarchaean metamorphic evolution 
of the Yilgarn Craton: A record of subduction, accretion, extension and lithospheric delamination. Precambrian Research, 335, 105441. 
https://doi.org/10.1016/j.precamres.2019.105441

Goscombe, B., Foster, D. A., Gray, D., & Wade, B. (2020). Assembly of central Gondwana along the Zambezi Belt: Metamorphic response 
and basement reactivation during the Kuunga Orogeny. Gondwana Research, 80, 410–465. https://doi.org/10.1016/j.gr.2019.11.004

Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. V., Van Achterbergh, E., O'Reilly, S. Y., & Shee, S. R. (2000). The Hf isotope compo-
sition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133–147.

Guo, H. (2017). Big Earth data: A new frontier in Earth and information sciences. Big Earth Data, 1(1–2), 4–20.
Hoskin, P. W., & Ireland, T. R. (2000). Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28, 627–630.
Hubbard, R. (2019). Will the ASA's efforts to improve statistical practice be successful? Some evidence to the contrary. The American Stat-

istician, 73, 31–35. https://doi.org/10.1080/00031305.2018.1497540
Keller, C. B., Husson, J. M., Mitchell, R. N., Bottke, W. F., Gernon, T. M., Boehnke, P., et al. (2019). Neoproterozoic glacial origin of the great 

unconformity. Proceedings of the National Academy of Sciences, 116, 1136–1145. https://doi.org/10.1073/pnas.1804350116
Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29, 115–129.
Kuiper, N. H. (1960). Tests concerning random points on a circle, paper presented at Indagationes Mathematicae (Proceedings). Elsevier.

SUNDELL AND SAYLOR

10.1029/2020GC009559

23 of 25

Acknowledgments
The authors are grateful to Christo-
pher Spencer and one anonymous 
reviewer for thorough and constructive 
comments, as well as Editor Peter van 
der Beek for manuscript handling. We 
thank Francis Macdonald for enlight-
ening discussions on the application 
and interpretation of Hf data and the 
Ediacaran-Cambrian reconstruction 
of Gondwana. We thank Steve Puetz 
and Kent Condie for compiling the 
global database of zircon U-Pb and 
Hf data, and all who made their data 
publicly available. The authors thank 
George Gehrels, Mark Pecha, Nicky 
Giesler, Martin Pepper, Sarah George, 
and Federico Moreno at the Arizona 
LaserChron Center (ALC); and Mark 
Holland for discussion on quantitative 
methods and potential Earth Science 
applications. This work was partially 
funded by the National Science Founda-
tion grant EAR-1649254 to Gehrels and 
Ruiz for the ALC in support of KES.

https://zenodo.org/badge/latestdoi/313485301
http://doi.org/10.5281/zenodo.4460336
http://doi.org/10.5281/zenodo.4460336
https://doi.org/10.1111/bre.12245
https://doi.org/10.1016/j.lithos.2010.07.024
https://doi.org/10.1371/journal.pone.0177347
https://doi.org/10.1214/10-AOS799
https://doi.org/10.1214/10-AOS799
https://doi.org/10.1016/j.jsames.2013.02.003
https://doi.org/10.1016/j.epsl.2009.09.013
https://doi.org/10.1016/j.gsf.2014.01.002
https://doi.org/10.1016/j.gsf.2014.01.002
https://doi.org/10.1130/ges00889.1
https://doi.org/10.1016/j.precamres.2019.105441
https://doi.org/10.1016/j.gr.2019.11.004
https://doi.org/10.1080/00031305.2018.1497540
https://doi.org/10.1073/pnas.1804350116


Geochemistry, Geophysics, Geosystems

Leary, R. J., Smith, M. E., & Umhoefer, P. (2020). Grain-size control on detrital zircon cycloprovenance in the Late Paleozoic Paradox and 
Eagle Basins, USA. Journal of Geophysical Research: Solid Earth, 125, 1–19. https://doi.org/10.1029/2019JB019226

Massey, F. J., Jr. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46, 68–78.
McKenzie, N. R., Horton, B. K., Loomis, S. E., Stockli, D. F., Planavsky, N. J., & Lee, C. T. A. (2016). Continental arc volcanism as the prin-

cipal driver of icehouse-greenhouse variability. Science, 352, 444–447. https://doi.org/10.1126/science.aad5787
McKenzie, N. R., Smye, A. J., Hegde, V. S., & Stockli, D. F. (2018). Continental growth histories revealed by detrital zircon trace elements: 

A case study from India. Geology, 46, 275–278. https://doi.org/10.1130/G39973.1
Metcalfe, I. (2013). Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of 

Asian Earth Sciences, 66, 1–33. https://doi.org/10.1016/j.jseaes.2012.12.020
Miller, M. B. (2014). Mathematics and statistics for financial risk management (2nd ed.). Hoboken, NJ: John Wiley and Sons, Inc.
Peacock, J. A. (1983). Two-dimensional goodness-of-fit testing in astronomy. Monthly Notices of the Royal Astronomical Society, 202, 

615–627.
Pearson, R. K. (2011). Exploring data in engineering, the sciences, and medicine. New York, NY: Oxford University Press.
Press, W. H., & Teukolsky, S. A. (1988). Kolmogorov-Smirnov Test for Two-Dimensional Data: How to tell whether a set of (x,y) data paints 

are consistent with a particular probability distribution, or with another data set. Computers in Physics, 2, 74–77.
Puetz, S. J., & Condie, K. C. (2019). Time series analysis of mantle cycles Part I: Periodicities and correlations among seven global isotopic 

databases. Geoscience Frontiers, 10(4), 1305–1326. https://doi.org/10.1016/j.gsf.2019.04.002
Pullen, A., Ibáñez-Mejía, M., Gehrels, G. E., Ibáñez-Mejía, J. C., & Pecha, M. (2014). What happens when n = 1000? Creating large-n 

geochronological datasets with LA-ICP-MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29, 971–980. https://
doi.org/10.1039/c4ja00024b

Quinn, D. P., Linzmeier, B. J., Sundell, K. E., Bruck, B. T., Ye, S., Gehrels, G. G., et al. (2020). The Sparrow software interface for linking 
analytical data and metadata in laboratory archives. San Diego, CA: EarthCube Annual Meeting.

Reiners, P. W. (2005). Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1), 151–179. https://doi.
org/10.2138/rmg.2005.58.6

Roberts, N. M. (2012). Increased loss of continental crust during supercontinent amalgamation. Gondwana Research, 21, 994–1000. 
https://doi.org/10.1016/j.gr.2011.08.001

Roberts, N. M., & Spencer, C. J. (2015). The zircon archive of continent formation through time. Geological Society, London, Special Publi-
cations, 389(1), 197–225. http://dx.doi.org/10.1144/SP389.14

Sambridge, M. S., & Compston, W. (1994). Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth 
and Planetary Science Letters, 128, 373–390. https://doi.org/10.1016/0012-821X(94)90157-0

Satkoski, A. M., Wilkinson, B. H., Hietpas, J., & Samson, S. D. (2013). Likeness among detrital zircon populations—An approach to 
the comparison of age frequency data in time and space. The Geological Society of America Bulletin, 125, 1783–1799. http://dx.doi.
org/10.1144/SP389.14

Saylor, J. E., Knowles, J. N., Horton, B. K., Nie, J., & Mora, A. (2013). Mixing of source populations recorded in detrital zircon U-Pb age 
spectra of modern river sands. The Journal of Geology, 121, 17–33. https://doi.org/10.1086/668683

Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12, 203–220. https://doi.
org/10.1130/GES01237.1

Saylor, J. E., Sundell, K. E., & Sharman, G. R. (2019). Characterizing sediment sources by non-negative matrix factorization of detrital 
geochronological data. Earth and Planetary Science Letters, 512, 46–58. https://doi.org/10.1016/j.epsl.2019.01.044

Schärer, U., & Allègre, C. J. (1982). Investigation of the Archean crust by single-grain dating of detrital zircon: A greywacke of the Slave 
Province, Canada. Canadian Journal of Earth Sciences, 19, 1910–1918.

Sellars, S., Nguyen, P., Chu, W., Gao, X., Hsu, K. L., & Sorooshian, S. (2013). Computational Earth science: Big data transformed into in-
sight. Eos, Transactions American Geophysical Union, 94(32), 277–278.

Sharman, G. R., & Johnstone, S. A. (2017). Sediment unmixing using detrital geochronology. Earth and Planetary Science Letters, 477, 
183–194. https://doi.org/10.1016/j.epsl.2017.07.044

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall.
Sobolev, S. V., & Brown, M. (2019). Surface erosion events controlled the evolution of plate tectonics on earth. Nature, 570, 52–57. https://

doi.org/10.1038/s41586-019-1258-4
Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb iso-

tope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219, 311–324. https://doi.org/10.1016/
S0012-821X(04)00012-3

Speer, J. A. (1980). Zircon. Reviews in Mineralogy and Geochemistry, 5, 67–112.
Spencer, C. J., Dyck, B., Mottram, C. M., Roberts, N. M., Yao, W. H., & Martin, E. L. (2019). Deconvolving the pre-Himalayan Indian mar-

gin–tales of crustal growth and destruction. Geoscience Frontiers, 10, 863–872. https://doi.org/10.1016/j.gsf.2018.02.007
Squire, R. J., Campbell, I. H., Allen, C. M., & Wilson, C. J. (2006). Did the Transgondwanan Supermountain trigger the explosive radiation 

of animals on earth? Earth and Planetary Science Letters, 250, 116–133. https://doi.org/10.1016/j.epsl.2006.07.032
Stacey, J. T., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science 

Letters, 26, 207–221.
Stern, R. J. (2008). Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth's tectonic history. 

When Did Plate Tectonics Begin on Planet Earth, 265, 280.
Stockli, D. F. (2005). Application of low-temperature thermochronometry to extensional tectonic settings. Reviews in Mineralogy and Geo-

chemistry, 58, 411–448. https://doi.org/10.2138/rmg.2005.58.16
Sundell, K. E., Gehrels, G. E., & Pecha, M. E. (2020). Rapid U-Pb geochronology by laser ablation multi-collector ICP-MS. Geostandards and 

Geoanalytical Research. https://doi.org/10.1111/ggr.12355
Sundell, K. E., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 18, 2872–

2886. https://doi.org/10.1002/2016GC006774
Sundell, K. E., Saylor, J. E., Lapen, T. J., Styron, R. H., Villarreal, D. P., Usnayo, P., & Cárdenas, J. (2018). Peruvian Altiplano stratigraphy 

highlights along-strike variability in foreland basin evolution of the Cenozoic central Andes. Tectonics, 37, 1876–1904. https://doi.
org/10.1029/2017TC004775

Tatsumoto, M., & Patterson, C. (1964). Age studies of zircon and feldspar concentrates from the Franconia sandstone. The Journal of Ge-
ology, 72, 232–242. https://doi.org/10.1086/626978

SUNDELL AND SAYLOR

10.1029/2020GC009559

24 of 25

https://doi.org/10.1029/2019JB019226
https://doi.org/10.1126/science.aad5787
https://doi.org/10.1130/G39973.1
https://doi.org/10.1016/j.jseaes.2012.12.020
https://doi.org/10.1016/j.gsf.2019.04.002
https://doi.org/10.1039/c4ja00024b
https://doi.org/10.1039/c4ja00024b
https://doi.org/10.2138/rmg.2005.58.6
https://doi.org/10.2138/rmg.2005.58.6
https://doi.org/10.1016/j.gr.2011.08.001
http://dx.doi.org/10.1144/SP389.14
https://doi.org/10.1016/0012-821X(94)90157-0
http://dx.doi.org/10.1144/SP389.14
http://dx.doi.org/10.1144/SP389.14
https://doi.org/10.1086/668683
https://doi.org/10.1130/GES01237.1
https://doi.org/10.1130/GES01237.1
https://doi.org/10.1016/j.epsl.2019.01.044
https://doi.org/10.1016/j.epsl.2017.07.044
https://doi.org/10.1038/s41586-019-1258-4
https://doi.org/10.1038/s41586-019-1258-4
https://doi.org/10.1016/S0012-821X(04)00012-3
https://doi.org/10.1016/S0012-821X(04)00012-3
https://doi.org/10.1016/j.gsf.2018.02.007
https://doi.org/10.1016/j.epsl.2006.07.032
https://doi.org/10.2138/rmg.2005.58.16
https://doi.org/10.1111/ggr.12355
https://doi.org/10.1002/2016GC006774
https://doi.org/10.1029/2017TC004775
https://doi.org/10.1029/2017TC004775
https://doi.org/10.1086/626978


Geochemistry, Geophysics, Geosystems

Thomas, W. A., Gehrels, G. E., Sundell, K. E., Greb, S. F., Finzel, E. S., Clark, R. J., et al. (2020). Detrital zircons and sediment dispersal in 
the eastern Midcontinent of North America. Geosphere, 16, 817–843. https://doi.org/10.1130/GES02152.1

Tucker, R. T., Roberts, E. M., Hu, Y., Kemp, A. I., & Salisbury, S. W. (2013). Detrital zircon age constraints for the Winton Formation, 
Queensland: Contextualizing Australia's Late Cretaceous dinosaur faunas. Gondwana Research, 24, 767–779. https://doi.org/10.1016/j.
gr.2012.12.009

Tye, A. R., Wolf, A. S., & Niemi, N. A. (2019). Bayesian population correlation: A probabilistic approach to inferring and comparing popu-
lation distributions for detrital zircon ages. Chemical Geology, 518, 67–78. https://doi.org/10.1016/j.chemgeo.2019.03.039

Vermeesch, P. (2004). How many grains are needed for a provenance study? Earth and Planetary Science Letters, 224, 441–451. https://doi.
org/10.1016/j.epsl.2004.05.037

Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312, 190–194. https://doi.org/10.1016/j.
chemgeo.2012.04.021

Vermeesch, P. (2013). Multi-sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.
chemgeo.2013.01.010

Vermeesch, P. (2018). Dissimilarity measures in detrital geochronology. Earth-Science Reviews, 178, 310–321. https://doi.org/10.1016/j.
earscirev.2017.11.027

Vermeesch, P. (2020). Maximum depositional age estimation revisited. Geoscience Frontiers, 12, 843–850. https://doi.org/10.1016/j.
gsf.2020.08.008

Vermeesch, P., & Garzanti, E. (2015). Making geological sense of “Big Data”in sedimentary provenance analysis. Chemical Geology, 409, 
20–27. https://doi.org/10.1016/j.chemgeo.2015.05.004

Vervoort, J. D., & Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim-
ica et cosmochimica acta, 63(3-4), 533–556.

Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond “p< 0.05”. The American Statistician, 73, 1–19. https://
doi.org/10.1080/00031305.2019.1583913

SUNDELL AND SAYLOR

10.1029/2020GC009559

25 of 25

https://doi.org/10.1130/GES02152.1
https://doi.org/10.1016/j.gr.2012.12.009
https://doi.org/10.1016/j.gr.2012.12.009
https://doi.org/10.1016/j.chemgeo.2019.03.039
https://doi.org/10.1016/j.epsl.2004.05.037
https://doi.org/10.1016/j.epsl.2004.05.037
https://doi.org/10.1016/j.chemgeo.2012.04.021
https://doi.org/10.1016/j.chemgeo.2012.04.021
https://doi.org/10.1016/j.chemgeo.2013.01.010
https://doi.org/10.1016/j.chemgeo.2013.01.010
https://doi.org/10.1016/j.earscirev.2017.11.027
https://doi.org/10.1016/j.earscirev.2017.11.027
https://doi.org/10.1016/j.gsf.2020.08.008
https://doi.org/10.1016/j.gsf.2020.08.008
https://doi.org/10.1016/j.chemgeo.2015.05.004
https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.1080/00031305.2019.1583913

	Two-Dimensional Quantitative Comparison of Density Distributions in Detrital Geochronology and Geochemistry
	Abstract
	1. Introduction
	2. Data Visualization
	2.1. Univariate Data Visualization
	2.2. Bivariate Data Visualization

	3. Quantitative Comparison
	3.1. 1D Quantitative Comparison
	3.2. 2D Quantitative Comparison
	3.3. Multidimensional Scaling

	4. Application to a Global Compilation of Zircon U-Pb and Hf Data
	4.1. Simple Example
	4.2. Sensitivity Testing
	4.3. How Similar are the Detrital Zircon and Igneous Zircon Records?
	4.4. Is the Ediacaran-Cambrian Hf Negative Isotopic Excursion a Global Signal?

	5. Discussion
	6. 
      DZstats2D Software
	7. Conclusions
	Data Availability Statement
	References


