
Research Paper

1Saylor and Sundell | Quantitative detrital geochronologyGEOSPHERE | Volume 12 | Number 1

s
a
y
l
o
r
_
0
1
2
3
7
  
2
n
d
 
p
a
g
e
s
 /
 1
 
o
f
 
1
8

Quantifying comparison of large detrital geochronology data sets
Joel E. Saylor and Kurt E. Sundell
Department of Earth and Atmospheric Sciences, University of Houston, Science & Research 1 Building, 3507 Cullen Boulevard, Room 312, Houston, Texas 77204, USA

ABSTRACT

The increase in detrital geochronological data presents challenges to ex-
isting approaches to data visualization and comparison, and highlights the 
need for quantitative techniques able to evaluate and compare multiple large 
data sets. We test five metrics commonly used as quantitative descriptors 
of sample similarity in detrital geochronology: the Kolmogorov-Smirnov (K-S) 
and Kuiper tests, as well as Cross-correlation, Likeness, and Similarity coeffi-
cients of probability density plots (PDPs), kernel density estimates (KDEs), and 
locally adaptive, variable-bandwidth KDEs (LA-KDEs). We assess these metrics 
by applying them to 20 large synthetic data sets and one large empirical data 
set, and evaluate their utility in terms of sample similarity based on the follow-
ing three criteria. (1) Similarity of samples from the same population should 
systematically increase with increasing sample size. (2) Metrics should max-
imize sensitivity by using the full range of possible coefficients. (3) Metrics 
should minimize artifacts resulting from sample-specific complexity. K-S and 
Kuiper test p-values passed only one criterion, indicating that they are poorly 
suited as quantitative descriptors of sample similarity. Likeness and Similarity 
coefficients of PDPs, as well as K-S and Kuiper test D and V values, performed 
better by passing two of the criteria. Cross-correlation of PDPs passed all three 
criteria. All coefficients calculated from KDEs and LA-KDEs failed at least two 
of the criteria.

As hypothesis tests of derivation from a common source, individual K-S 
and Kuiper p-values too frequently reject the null hypothesis that samples 
come from a common source when they are identical. However, mean p-val-
ues calculated by repeated subsampling and comparison (minimum of 4 trials) 
consistently yield a binary discrimination of identical versus different source 
populations. Cross-correlation and Likeness of PDPs and Cross-correlation of 
KDEs yield the widest divergence in coefficients and thus a consistent discrim-
ination between identical and different source populations, with Cross-cor-
relation of PDPs requiring the smallest sample size. In light of this, we recom-
mend acquisition of large detrital geochronology data sets for quantitative 
comparison. We also recommend repeated subsampling of detrital geochro-
nology data sets and calculation of the mean and standard deviation of the 
comparison metric in order to capture the variability inherent in sampling a 
multimodal population.

These statistical tools are implemented using DZstats, a MATLAB-based 
code that can be accessed via an executable file graphical user interface. It 
implements all of the statistical tests discussed in this paper, and exports the 
results both as spreadsheets and as graphic files.

INTRODUCTION

Over the past two decades detrital geochronology has emerged as a 
standard tool for sediment provenance analysis, largely due to the advent 
of in situ analytical techniques yielding rapid, precise U-Pb analyses (Fedo 
et al., 2003; Gehrels et al., 2008; Shaulis et al., 2010). Applications of  detrital 
geochronology encompass questions of sediment provenance, sediment 
 budgets, correlations between sedimentary units, and determinations of 
depo si tional age (e.g., Gehrels, 2012; Vermeesch, 2012). These applications 
have benefitted from growing samples sizes, which have allowed robust 
inter sample comparison, identification of small subpopulations, and quan-
tification of relative subpopulation proportions (Vermeesch, 2004; Andersen, 
2005; Pullen et al., 2014).

The increase in detrital geochronological data presents challenges to exist-
ing approaches to data visualization and comparison (Vermeesch, 2012, 2013; 
Vermeesch and Garzanti, 2015). It also highlights the need for quantitative tech-
niques able to evaluate and compare multiple large data sets while still repre-
senting the uncertainty present in the data sets and the variability inherent in 
sampling a multimodal population (Andersen, 2005; Gehrels, 2012; Satkoski 
et al., 2013). Visual comparison of age distributions as probability density plots 
(PDPs), cumulative distribution functions (CDFs), cross-plots of CDF pairs (Q-Q 
plots), or kernel density estimates (KDEs) has been and will likely continue 
to be foundational for data interpretation. However, these visual  methods be-
come increasingly cumbersome with large sample numbers or sample size. 
For example, although large data sets are essential for continental-scale or 
high-resolution correlation, interpretation of these extensive data sets often 
relies on visual comparison of full page or multipage age distribution plots. 
Visual inspection also yields no quantitative comparison between samples, 
hampering application of forward mixing models and increasing the possibil-
ity of subjectivity or approximation in interpretation.

The analysis above points to a growing need for data assessment beyond 
visual inspection alone. The scientific community responded to the need 
for quantitative comparison metrics through application of statistical tests 
intended to determine whether samples were drawn from the same parent 
population using hypothesis tests such as the Kolmogorov-Smirnov (K-S) test 
(e.g., DeGraaff-Surpless et al., 2003; Fedo et al., 2003; Weislogel et al., 2010; 
Lawrence et al., 2011). These methods have been applied to determine if two 
samples may have been drawn from the same parent population, and to deter-
mine the degree of similarity between sample populations. Alternative metrics 
such as the Likeness/Mismatch, Similarity, and Cross-correlation (cross-plot 
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R2 values) coefficients lack a clear hypothesis test, but assess the degree of 
similarity between samples (Gehrels, 2000; Amidon et al., 2005a; Saylor et al., 
2012; 2013; Satkoski et al., 2013).

In this paper we evaluate the limits of these quantitative approaches when 
applied to large detrital geochronological data sets by applying them to 20 
synthetic data sets as well as a published empirical detrital zircon U-Pb data 
set. Our goal is not to define a single statistical metric or data set size that 
should be applied in all cases, but rather to evaluate the sensitivity of proposed 
metrics over a range of data set sizes. We envision the methods discussed in 
this paper as complimentary to, rather than replacing, the now-standard ap-
proaches of data visualization and analysis.

METHODS

Quantitative Methods

We used five methods to evaluate the similarity between synthetic data 
sets and a large empirical data set published by Pullen et al. (2014). We applied 
the K-S and Kuiper tests to each pair of data sets and calculated Similarity, 
Likeness, and Cross-correlation coefficients (Fig. 1) based on the sample PDPs, 
adaptive KDEs, and locally adaptive, variable-bandwidth KDEs (LA-KDEs). We 
also compared the effect size of the K-S and Kuiper tests (D and V values, 
respectively) to determine whether these provide a more robust comparison 
than their derivative p-values. This yields a total of 13 metrics for each of the 
subsamples of the populations described in the following.

Kolmogorov-Smirnov Test

The nonparametric two-sample K-S test tests the null hypothesis that 
two samples are drawn from parent populations with the same distribution, 
or informally, that the variation between two age populations is within the 
expected variation assuming random sampling of a parent population. It is 
based on the K-S statistic (D), which is the maximum difference between the 
empiri cal CDF of the two samples (Fig. 1E), and returns a p-value that is in-
versely proportional to the confidence level at which that the two samples fail 
the hypothe sis. The D value is calculated as

 D = supx1,2 F1(x) −F2(x) , (1)

where F1 and F2 are the CDFs of the two samples, constructed from n1 and 
n2 observations, respectively. The probability (p) that the observed D value is 
greater than the expected D value for samples drawn from the same popula-
tion was calculated by Stephens (1970) as

 p(Dobserved > Dcritical) = QKS(λ) = 2 (−1) e −2i–1 i2λ2

i=1

∞∑ , (2)

where

 λ = ne + 0.12 + 0.11
ne

D







, (3)

and

 ne = n1n2

n1 + n2
, (4)

with limiting values of

 QKS(0) = 1 and QKS(∞) = 0. (5)

Thus, for example, a p-value <0.05 corresponds to a >95% confidence level 
that the 2 samples are not drawn from the same parent population. The K-S 
test requires relatively large sample sizes to accurately reject the null hypothe-
sis in part due to distortion of the distributions introduced by random sampling 
of a large population.

Kuiper Test

A commonly used alternative to the two-sample K-S test is the two-sample 
Kuiper test (Kuiper, 1960; Press et al., 2007). Like the K-S test, the Kuiper test tests 
the null hypothesis that two samples are drawn from parent populations with 
the same distribution. This variant of the K-S test guarantees equal sensitivities 
for the entire cumulative distribution functions of the two samples, whereas the 
K-S test tends to be more sensitive near the median and relatively insensitive to 
the distribution tails. The Kuiper statistic (V) is calculated from two CDFs, F1 and 
F2, each constructed from n1 and n2 observations, respectively (Fig. 1E),
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Figure 1. Schematic illustration of the methods discussed in the text. (A) Probability density 
plots (PDPs) of age distributions with 5 modal ages, each with an associated uncertainty of 10%. 
(B) Similarity calculation and coefficient for PDPs I and II. (C) Likeness calculation and coefficient 
for PDPs I and II. (D) Cross-correlation coefficient (coefficient of determination, dashed line) of 
cross-plots of PDPs I and II. (E) Kolmogorov-Smirnov (K-S) D value and Kuiper V values of cumu-
lative distribution functions (CDF) based on the distributions shown in A. K-S and Kuiper tests 
do not incorporate uncertainties or bandwidth associated with each modal age.

http://geosphere.gsapubs.org
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 V(x) = max
−∞<x <∞

[F1(x ) −F2(x )] + max
−∞<x <∞

[F2(x ) −F1(x )] (6)

with a probability that level (p) that Vobserved > Vcritical, calculated by Stephens (1970),

 p(Vobserved > Vcritical) = QKP (λ) = 2 (i2λ2 −1)e −2i2λ2

i=1

∞∑ , (7)

where
 λ = ne + 0.155 + 0.24

ne

V








, (8)

and ne is defined as in Equation 4.
As with the K-S test, this is subject to the limiting conditions

 QKP (0) = 1 and QKP (∞) = 0. (9)

Similar to the K-S test, a p-value <0.05 corresponds to a >95% confidence 
that the two samples are not drawn from the same parent population. Also like 
the K-S test, the Kuiper test requires relatively large sample sizes to accurately 
reject the null hypothesis.

Mixture Distributions and Kernel Density Estimations

The Similarity, Likeness, and Cross-correlation coefficients are based  either 
on a finite mixture distribution of the probability density functions (PDFs) or 
KDEs of the sample ages. Mixture distributions are a commonly used ap-
proach to model a population composed of two or more subpopulations 
and are used in a variety of disciplines including the physical sciences, medi-
cine, eco nomics, engineering, and social sciences (Smith and Bartlet, 1961; 
 Behboodian, 1970; Everitt and Hand, 1981; Titterington et al., 1985; Lo et al., 
2001; Everitt, 2005; Pearson, 2011; Martin, 2012; Miller, 2014). The discrete mix-
ture distribution [f(x)], calculated from n observations is given as

 f (x ) = wifi(x )
i=1

n∑ , (10)

where wi, the mixing proportion, is typically 1/n and must satisfy the relationship

 wi = 1
i=1

n∑ . (11)

In these expressions, fi(x) is the PDF,

 f i(x ) = 1
σi 2π

exp − 1
2

x − µi

σi

2

, (σ > 0)











 , (12)

where the mean (m) is the mean grain age and the standard deviation (s) is 
based on analytical uncertainty (Fig. 1A). “The final distribution, f(x), is a legiti-
mate probability distribution in its own right,” (Miller, 2014, p. 99) “called the 
mixture density” (Pearson, 2011, p. 470). This is broadly the same procedure 
introduced into the geochronological literature in the 1980s (Jessberger et al., 
1980; Hurford et al., 1984; Dodson et al., 1988) and widely adopted to produce 
PDPs (alternatively termed probability density distributions; Brandon, 1996; 
Fedo et al., 2003; Sircombe, 2004; Gehrels, 2012). We retain the term proba-

bility density plot due to its popularity within the geochronological literature 
and a desire to minimize introduction of multiple terms with the same referent.

Kernel density estimation is an alternative method of estimating a sample’s 
PDF. KDEs are nonparametric in the sense that they are applicable regardless 
of the shape of the PDF and do not require a particular type of parameter in 
the population elements (i.e., do not require a normal Gaussian distribution 
in population elements). The KDE is defined as

 f̂h(x ) = 1
nh

K x − x1

hi=1

n∑ 



 , (13)

where f̂h(x) is the density estimate, h is the bandwidth (also called window 
width or smoothing parameter), K is the kernel function, and xi is the mean 
grain age (Silverman, 1986). Kernel estimates are a special case of a general 
mixture density composed of n, typically identical (but see exceptions for lo-
cally adaptive KDEs) component kernels (Scott, 1992). The kernel function (K) 
can be any of a number of functions, including for example boxcar, triangular, 
or, most commonly, Gaussian kernels. Selection of the kernel function is not 
as critical as selection of the appropriate bandwidth, h. If h is too large, the 
KDE will be oversmoothed, resulting in loss of resolution. Alternatively, if h 
is too small, the KDE will be artificially rough and feature too many modes. 
Silverman (1986, p. 18) noted that, “[b]ecause the window width is fixed 
across the entire sample, there is a tendency for spurious noise to appear in 
the tails of the estimates; if the estimates are smoothed sufficiently to deal 
with this, then essential detail in the main part of the distribution is masked.” 
KDEs also discard variability in uncertainties associated with data acquisition 
(heteroscedastic uncertainties), a feature that can lead to either oversmooth-
ing or undersmoothing of the resultant KDE. Several approaches have been 
developed to deal with the issues raised by KDEs, including bandwidth opti-
mization algorithms, LA-KDEs, and deconvolution techniques to account for 
heteroscedastic uncertainties (e.g., Delaigle and Meister, 2008; Staudenmayer 
et al., 2008; Carroll et al., 2009; Botev et al., 2010; Shimazaki and Shinomoto, 
2010; McIntyre and Stefanski, 2011). We use two variable bandwidth KDEs in 
our calculation of the Cross-correlation, Similarity, and Likeness coefficients. 
The first is the LA-KDE (Shimazaki and Shinomoto, 2010). In this model the 
local bandwidth is inversely proportional to the data density over the local 
sample space, resulting in reduced smoothing in intervals with high data den-
sity and increased smoothing over intervals with lower data densities. The 
second is the diffusion-based adaptive bandwidth model of Botev et al. (2010). 
This model estimates the optimal bandwidth which is then applied uniformly 
across the sample space.

Cross-Correlation Coefficient

The Cross-correlation coefficient is the coefficient of determination of a 
cross-plot of PDPs or KDEs of two samples for the same age intervals (Saylor 
et al., 2012, 2013). This is similar to a Q-Q or P-P plot (Wilk and Gnanadesikan, 

http://geosphere.gsapubs.org
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1968), with the exception that PDPs or KDEs, rather than CDFs, are used in 
the cross-plot. The cross-plot is sensitive to the presence or absence of age 
peaks and to changes in the relative magnitude or shape of the peaks. For  
samples with identical age peaks, peak shapes, and peak magnitudes (i.e., 
identical age spectra), the R2 value of the cross-plot will be 1; for those that 
share no age peaks, the R2 value will approach 0. For samples that share either 
some, but not all, peaks, or have peaks of different magnitudes or shapes, the 
R2 value of the cross-plot will be between 0 and 1 with a higher value for sam-
ples that are more similar. They are also more sensitive to differences between 
samples than traditional Q-Q plots because the relative probability is not a 
monotonically increasing function.

Similarity Coefficient

The Similarity coefficient measures whether samples have overlapping 
modes as well as similar proportions of components in each of the modes 
(Fig. 1B). Gehrels (2000) defined it as

 S = f (i)g(i)
i=1

n∑ , (14)

where f (i) and g(i) are the PDPs or KDEs and i are ages between 1 and n. 
A value of 1 indicates samples that are perfectly matched both in the modes 
and modal proportions, while a value of 0 indicates that the two samples share 
no modes.

Likeness Coefficient

Likeness (Satkoski et al., 2013) is the complement of the area mismatch 
(Fig. 1C; Amidon et al., 2005a, 2005b). The area mismatch (M) is calculated as

 M = f (i) − g(i)
i=1

i=n∑( ) 2, (15)

where f(i) and g(i) are the PDPs or KDEs of samples one and two, respectively, 
and n is the interval of interest. Likeness (L) is then

 L = 1− M. (16)

Synthetic Data Sets

We created 20 synthetic data sets intended to produce hypothetical empiri-
cal detrital geochronology data sets and their associated uncertainties (Sup-
plemental File 11). Data sets were produced by first specifying the number of 
modal ages in the population (between 4 and 150 age modes, Fig. 2).  Unless 
otherwise specified, age modes were randomly distributed between 10 and 

3500 Ma so that all sample ages drawn from it would have geologically reason-
able ages (Fig. 3). In the bimodally distributed population, modal ages where 
excluded from the central half of the interval from 0 to 3500 Ma and age modes 
were randomly drawn from values younger than 875 and older than 2625 Ma. 
In the centrally distributed population, modal ages were constrained to the 
central half of the interval from 0 to 3500 Ma (i.e., age modes were randomly 
drawn from between 875 and 2625 Ma). Centrally distributed and bimodally 
distributed samples were included to ensure that at least two samples have 
no overlapping age modes. Modal abundances for 10 of the distributions were 
specified a priori, while the other 10 were allowed to vary randomly (Fig. 2). The 
standard deviation about each mean modal age was also randomly assigned  

1/2 samples 1/2 samples

Master Population
Analogous to the age 

distribution in a specific 
outcrop

Parent Samples (4x)
Analogous to the age 

distribution in four 
samples from one outcrop

Subsamples
Analogous to analysis of 
25–10,000 grains from 
each of the four parent 

samples

Master Age Distribution
Analogous to the age 

distribution in 
sedimentary source

1: Determine the number of 
age modes in sample 
(between 4 and 150)

3: Randomly assign modal 
mean  ages and variability 
about mean ages

4: From master age distribu-
tion, randomly select 107 
ages from modes at propo-
tions determined above

2a: Specify proportion of 
grains in each mode

2b: Modes’ proportions 
allowed to vary randomly

5: From master population, 
randomly select 106 ages 
and assign random uncer-
tainties four times

6: From each parent sample, 
select 25-104 ages and 
uncertainies and apply all 
statistical tests

Figure 2. Flow chart of steps taken to produce the synthetic data sets. The text to the left of 
the boxes indicates the terms applied to the data sets produced in each step as well as the 
real-world analog for each of the steps.

Test \n1:n2  25  50  75  100  
Min KS p -value  1 0.98963  0.64852  0.41406  1 0.95413  0.84095  0.50766  1 0.18943  0.88421  0.48855  1 0.13998  0.67662  0.099376  

0 1 0.87741  0.64852  0 1 0.50766  0.35842  0 1 0.62481  0.086845  0 1 0.55602  0.047047  
0 0 1 0.41406  0 0 1 0.50766  0 0 1 0.48855  0 0 1 0.34389  
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

Min KS D -value  0 0.12  0.2  0.24  0 0.1  0.12  0.16  0 0.17333  0.093333  0.13333  0 0.16  0.1  0.17  
0 0 0.16  0.2  0 0 0.16  0.18  0 0 0.12  0.2  0 0 0.11  0.19  
0 0 0 0.24  0 0 0 0.16  0 0 0 0.13333  0 0 0 0.13  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Min Kuiper p -value  0 0.99987  0.75357  0.32498  0 0.96534  0.96534  0.21479  0 0.16506  0.69242  0.44223  0 0.051411  0.48433  0.076876  
0 0 0.92171  0.32498  0 0 0.76967  0.13384  0 0 0.80858  0.044077  0 0 0.38328  0.00045401  
0 0 0 0.53082  0 0 0 0.21479  0 0 0 0.16506  0 0 0 0.021306  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Min Kuiper V -value  0 0.16  0.28  0.36  0 0.16  0.16  0.28  0 0.24  0.17333  0.2  0 0.24  0.17  0.23  
0 0 0.24  0.36  0 0 0.2  0.3  0 0 0.16  0.28  0 0 0.18  0.33  
0 0 0 0.32  0 0 0 0.28  0 0 0 0.24  0 0 0 0.26  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Min Cross -correla�on PDP  1 0.55024  0.51405  0.27285  1 0.55115  0.8006  0.46875  1 0.52108  0.75056  0.74329  1 0.65475  0.67906  0.7368  
0 1 0.34278  0.51527  0 1 0.49298  0.43887  0 1 0.50606  0.5325  0 1 0.61278  0.51301  
0 0 1 0.21324  0 0 1 0.39995  0 0 1 0.56985  0 0 1 0.54305  
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

Min Similarity PDP  0.99999  0.94346  0.92156  0.91122  0.99999  0.96053  0.97044  0.95146  0.99999  0.94796  0.96817  0.973  0.99997  0.95578  0.96815  0.96967  
0 0.99949  0.89773  0.91283  0 0.99878  0.94835  0.93848  0 0.99918  0.9563  0.94345  0 0.99938  0.96281  0.93086  
0 0 0.99996  0.8588  0 0 0.99992  0.94651  0 0 0.99995  0.96195  0 0 0.99996  0.96087  
0 0 0 0.99992  0 0 0 0.99996  0 0 0 0.99997  0 0 0 0.99998  

Min Likeness PDP  1 0.74066  0.71049  0.67154  1 0.80286  0.83061  0.76514  1 0.75364  0.79238  0.83388  1 0.78426  0.78795  0.81348  
0 1 0.65612  0.6777  0 1 0.75753  0.73456  0 1 0.80776  0.74491  0 1 0.80816  0.71457  
0 0 1 0.60447  0 0 1 0.76147  0 0 1 0.7828  0 0 1 0.76571  
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

Min Cross -correla�on LA_KDE 1 0.80396  0.79858  0.59727  1 0.52448  0.70682  0.54828  1 0.50654  0.73389  0.66667  1 0.65159  0.76934  0.75652  
0 1 0.94938  0.58867  0 1 0.85018  0.54373  0 1 0.7753  0.80358  0 1 0.88606  0.87136  
0 0 1 0.57406  0 0 1 0.47942  0 0 1 0.7236  0 0 1 0.89576  
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

1Supplemental File 1. Synthetic data sets used in 
this research. Please visit http:// dx .doi .org /10 .1130 
/GES01237 .S1 or the full-text article on www .gsapubs 
.org to view Supplemental File 1.

http://geosphere.gsapubs.org
http://dx.doi.org/10.1130/GES01237.S1
http://dx.doi.org/10.1130/GES01237.S1
http://www.gsapubs.org
http://www.gsapubs.org
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as much as 2% of the mean age for ages older than 900 Ma, and as much as 
10% of the mean age for ages younger than 900 Ma. Randomization in these 
three steps was conducted using the random number generator, RAND(), 
included in Microsoft Excel 2010, based on the algorithm of Matsumoto and 
Nishimura (1998), and generates pseudorandom numbers with replacement 
with a period of 219937 (L’Ecuyer and Simard, 2007). See Mélard (2014) for a dis-
cussion of the statistical robustness of the RAND() function in Excel 2010. This 
procedure produces a continuous distribution that is analogous to the theoreti-
cal distribution of mineral ages in a hypothetical sediment source area (Fig. 2). 
In empirical studies, as in our model, it is impossible to fully reconstruct the 
continuous distribution from the discrete samples drawn from it. The closest 
we can achieve is a very good approximation.

Using the specified distributions and proportions of modal ages, we gener-
ated 107 ages and assigned uncertainties randomly between 0.5% and 10% of 
the randomly generated ages. These data sets would be analogous to the min-
eral ages in a particular outcrop (Fig. 2). Uncertainties assigned at this stage 
are analogous to the final reported age uncertainty, which incorporates both 
random and systematic uncertainties, and are intended to reflect uncertain-
ties reported for multiple geochronometric systems. Hence the mean assigned 
uncertainty is slightly higher than is typically reported for zircon U-Pb ages, 
but slightly lower than typical (U-Th)/He or fission track ages. For this and sub-
sequent steps randomization was conducted using the pseudorandom rand 
function in MATLAB. The rand function implements the ziggurat algorithm of 
Marsaglia and Tsang (1984) to generate matrices of pseudorandom, uniformly 
distributed values with replacement.

Four samples of size n2 = 106 were then randomly drawn from the (n1 = 107) 
population without replacement for further comparison using the randperm 
function in MATLAB. The randperm function implements the same algorithm 
as rand to create a randomly arranged vector matrix containing integers one 
through n1 (inclusive). The first n2 integers of the vector matrix were then used 
as indices to sample the population. These samples are analogous to four 
sandstone samples taken from an outcrop (Fig. 2). The size of the samples 
was selected so that a subsample of a size that could be reasonably produced 
during geochronological analysis would be <1% of the sample size. Four sub-
samples of between 25 and 10,000 ages and associated uncertainties were 
then randomly drawn without replacement from each sample using the rand-
perm function. Each statistical method was applied to pairs of the subsamples, 
yielding a total of six comparisons for each test for every subsample size. Sub-
samples are analogous to the grains actually analyzed during geo chrono logi-
cal analysis.

0 500 1000 1500 2000 2500 3000 3500 4000
Age (Ma)

N
or

m
al

iz
ed

 P
ro

ba
bi

lit
y

150 Age Modes

100 Age Modes #2

100 Age Modes #1

75 Age Modes

50 Age Modes

49 Age Modes

44 Age Modes

33 Age Modes

30 Age Modes

25 Age Modes

22 Age Modes bimodally distributed

22 Age Modes centrally distributed

22 Age Modes #4

22 Age Modes #3

22 Age Modes #2

22 Age Modes #1

19 Age Modes

11 Age Modes

5 Age Modes

4 Age Modes

Empirical (~33 age modes)A

B

C

D

E

F

G

H

J

K

L

M

N

O

P

Q

R

S

T

U

I

Figure 3. Normalized probability density plots of the empirical and 20 synthetic parent samples. 
Colors (black, red, blue, or green) correspond to the four samples drawn from parent popula-
tions in step 5 (parent samples) of Figure 2.
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We applied each of the 13 metrics to 6 combinations of 38 subsamples of 
the 4 samples from each of the 20 synthetic populations for a total of 59,280 
analyses. We also applied the comparison metrics to pairs from all unrelated 
data sets for a total of 190 unique combinations. We then applied the 13 met-
rics to these 190 combinations of 25 subsamples of 20 populations for a total 
of 61,750 analyses of different populations.

Empirical Data Set

Empirical data sets are from Pullen et al. (2014), who produced 4 large 
detrital zircon U-Pb data sets by analyzing between 962 and 1067 grains from 
a fluvial quartz arenite capping the upper Cretaceous Wahweap Formation 
(sample CP40 of Dickinson and Gehrels, 2008) in 4 separate trials (Fig. 3A). 
Analysis of a combined PDP incorporating all ages from the 4 trials indicates 
that it has 33 major age modes, identified as local maxima. We randomly 
drew 25 subsamples from each of the 4 data sets and applied each of the 13 
metrics to all 6 pairs of the subsamples for a total of 1950 analyses of the em-
pirical data sets.

RESULTS

We present the results of 4 representative synthetic populations with 5, 30, 
50, and 100 age modes and the empirical data sets in detail below (Figs. 4–8), 
followed by a summary of the results from all tests (Fig. 9). The detailed results 
for the remainder of the populations are presented Supplemental File 22.

Identical Synthetic Populations

As expected for sampling an essentially infinite population, K-S and 
Kuiper mean p-values for samples of the same population show no trend 
with increasing sample size (Figs. 9A, 9B). However, unexpectedly, mean 
p-values calculated from multiple samples of the same population have 
high standard deviations for all subsample sizes between n = 25 and 
10,000 (Figs. 4E, 4F, 5E, 5F, 6E, 6F, 7E, 7F). These two traits suggest that 
the p-values are extremely sensitive to minor variations in samples of the 
same population and so will be unreliable quantitative metrics of the simi-
larity of two samples. For a = 0.05, the standard null hypothesis would be 
rejected for as much as 73% and 58% of the sample pairs for at least one 
subsample size for the K-S and Kuiper tests, respectively (see minimum 
p-values in supplemental Figs. S1–S16 in Supplemental File 2). Because 
only 5% of the tests should be significant with a = 0.05, the fact that as 
many as 73% of the tests are significant suggests that the K-S and Kuiper 
tests are too powerful.

Conversely, the Cross-correlation, Likeness, and Similarity coefficients of 
sample PDPs (Fig. 9C), and the D and V values (Figs. 9A, 9B) behave system-
atically, with each approaching their predicted asymptotes of 1 and 0, respec-
tively, and decreasing standard deviation.

Counterintuitively, there is a nadir in Cross-correlation, Similarity, and Like-
ness coefficients between n = 50 and n = 400 when used to compare the KDE 
or LA-KDE (Figs. 4G–4I, 5G–5I, 6G–6I, 7G–7I, 9D, 9E). The nadir becomes more 
pronounced with increasing number of age modes, but is evident even with as 
few as five age modes (Fig. 4G). The minimum coefficient of the nadir as well 
as the subsample size at which coefficients begin to rise again are proportional 
to the number of age modes in the sample.

Empirical Samples

K-S and Kuiper tests of the four empirical samples yield an inverse relation-
ship between the mean p-values and data set size with large standard devia-
tions for all values of n (Figs. 8E, 8F). In contrast, mean Similarity, Likeness, and 
Cross-correlation coefficients consistently increase, and measurements from 
comparison of individual sample pairs converge with increasing data set size 
(Figs. 8G, 8H, 8I). However, for Cross-correlation, the absolute increase in the 
coefficient and decrease in standard deviation is more dramatic than in any of 
the alternatives.

Different Synthetic Populations

K-S and Kuiper test p-values for different populations decrease with in-
creasing data set size (Figs. 10A, 10B). Mean p-values rapidly drop below 0.05 
for n > 75. However, maximum p-values remain above 0.05 for n < 1000 and 
n < 475 for the K-S and Kuiper tests, respectively (Figs. 10A, 10B). In contrast, 
the mean, maximum, and minimum D and V values show little change with in-
creasing subsample size and yield mean values of ~0.35 and 0.5, respectively, 
and a range that spans almost the entire possible range of coefficients. The 
PDP Cross-correlation, Likeness, and Similarity coefficients are also relatively 
constant with increasing n. However, PDP Cross-correlation yields maximum 
values between 0.5 and 0.65 for n > 100, and mean values < 0.1 (Fig. 10C). PDP 
Similarity and Likeness yield coefficients that span almost the entire range 
of possible coefficients and have means of 0.7–0.8 and 0.5–06, respectively. 
Maximum Cross-correlation, Similarity, and Likeness coefficients for KDEs or 
LA-KDEs decrease dramatically with increasing n (Figs. 10D, 10E). As with PDP 
Cross-correlation, the KDE and LA-KDE Cross-correlation yields mean coeffi-
cients that are typically <0.1. Mean KDE and LA-KDE Similarity coefficients de-
crease from ~0.7 to between 0.3 and 0.4 between n = 25 and n = 200 with little 
change for larger subsample sizes. Mean KDE and LA-KDE Likeness coeffi-
cients decrease from 0.4 to 0.5 for n = 25 to ~0.2 for n = 200 and do not change 
significantly for larger subsamples sizes.
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2Supplemental File 2. Plots of detailed results of 16 
samples not presented in Figures 4–7. MATLAB files, 
executable file, and User Manual for DZstats. Please 
visit http:// dx .doi .org /10 .1130 /GES01237 .S2 or the 
full-text article on www .gsapubs .org to view Supple-
mental File 2.
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http://dx.doi.org/10.1130/GES01237.S2
http://www.gsapubs.org


Research Paper

7Saylor and Sundell | Quantitative detrital geochronologyGEOSPHERE | Volume 12 | Number 1

s
a
y
l
o
r
_
0
1
2
3
7
  
2
n
d
 
p
a
g
e
s
 /
 7
 
o
f
 
1
8

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

G  Cross-correlation

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

H  Similarity

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

I  Likeness

0 500 1000 1500 2000 2500 3000 3500 4000
Age (Ma)

D  n=100

B  n=500

A  n=1000

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

E  K-S p-value

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
C

oe
ffi

ci
en

t

K-S D value

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

F  Kuiper p-value

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
C

oe
ffi

ci
en

t

Kuiper V value

C  n=200

PDP LA-KDE KDE5 Age Modes

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

G  Cross-correlation

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

H  Similarity

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

I  Likeness

0 500 1000 1500 2000 2500 3000 3500 4000
Age (Ma)

D  n=100

B  n=500

A  n=1000

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

E  K-S p-value

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
C

oe
ffi

ci
en

t

K-S D value

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
0.

6
0.

8
1

C
oe

ffi
ci

en
t

F  Kuiper p-value

101 102 103 104

Subsample size (n)

0
0.

2
0.

4
C

oe
ffi

ci
en

t

Kuiper V value

C  n=200

PDP LA-KDE KDEPDP LA-KDE KDE30 Age Modes

Figure 4. Summary of data and comparison for the synthetic population with 5 age modes. Probability density plots (PDPs, 
in black), adaptive Kernel density estimates (KDEs, in green), and locally adaptive (LA) KDEs (in red) are shown for sub-
samples. (A) For n = 1000. (B) For n = 500. (C) For n = 200. (D) For n = 100. X-axis for density distributions is as the lowest 
sample. (E) Mean and standard deviation for Kolmogorov-Smirnov (K-S) test p-values and D values. (F) Mean and standard 
deviation for Kuiper test p-values and V values. (G) Coefficients of PDPs, KDEs, and LA-KDEs calculated using Cross-correla-
tion. (H) Using Similarity. (I) Using Likeness. 1σ error bars calculated from repeated sub sampling of the four samples. K-S 
and Kuiper tests are calculated independently of either PDPs or KDEs.

Figure 5. Summary of data and comparison for the synthetic population with 30 age modes. Probability density plots 
(PDPs in black), adaptive Kernel density estimates (KDEs, in green) and locally adaptive (LA) KDEs (in red) are shown for 
subsamples. (A) For n = 1000. (B) n = 500. (C) n = 200. (D) n = 100. X-axis for density distributions is as the lowest sample. 
(E) Mean and standard deviation for Kolmogorov-Smirnov (K-S) test p-values and D values. (F) Mean and standard devia-
tion for Kuiper test p-values and V values. (G) Coefficients of PDPs, KDEs, and LA-KDEs calculated using Cross-correlation. 
(H) Calculated using Similarity. (I) Calculated using Likeness. 1σ error bars are calculated from repeated subsampling of the 
four samples. K-S and Kuiper tests are calculated independently of either PDPs or KDEs.
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Figure 6. Summary of data and comparison for the synthetic population with 50 age modes. Probability density plots 
(PDPs in black), adaptive Kernel density estimates (KDEs, in green) and locally adaptive (LA) KDEs (in red) are shown for 
sub samples. (A) For n = 1000. (B) For n = 500. (C) For n = 200. (D) For n = 100. X-axis for density distributions is as the  lowest 
sample. The tendency of the KDE algorithm to oversmooth the distribution is particularly evident in D. (E) Mean and stan-
dard deviation for Kolmogorov-Smirnov (K-S) test p-values and D values. (F) Mean and standard deviation for Kuiper test 
p-values and V values. (G) Coefficients of PDPs, KDEs, and LA-KDEs calculated using Cross-correlation. (H) Calculated using 
Similarity. (I) Calculated using Likeness. 1σ error bars calculated from repeated subsampling the four samples. K-S and 
Kuiper tests are calculated independently of either PDPs or KDEs.

Figure 7. Summary of data and comparison for the synthetic population with 100 age modes. Probability density plots 
(PDPs in black), adaptive Kernel density estimates (KDEs, in green) and locally adaptive (LA) KDEs (in red) are shown for 
sub samples. (A) For n = 1000. (B) For n = 500. (C) For n = 200. (D) For n = 100. X-axis for density distributions is as the  lowest 
sample. The tendency of the KDE algorithm to oversmooth the distribution is particularly evident in D. (E) Mean and stan-
dard deviation for Kolmogorov-Smirnov (K-S) test p-values and D values. (F) Mean and standard deviation for Kuiper test 
p-values and V values. (G) Coefficients of PDPs, KDEs, and LA-KDEs calculated using Cross-correlation. (H) Calculated using 
Similarity. (I) Calculated using Likeness. 1σ error bars calculated from repeated subsampling the four samples. K-S and 
Kuiper tests are calculated independently of either PDPs or KDEs.
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Figure 8. Summary of data and comparison for the four empirical data sets (Pullen et al., 2014). Probability density plots 
(PDPs in black), adaptive Kernel density estimates (KDEs, in green) and locally adaptive (LA) KDEs (in red) are shown 
for subsamples. (A) For n = 950. (B) For n = 500. (C) For n = 200. (D) For n = 100. (E) Mean and standard deviation for 
 Kolmogorov-Smirnov (K-S) test p-values and D values. (F) Mean and standard deviation for Kuiper test p-values and V 
values. (G) Coefficients of PDPs, KDEs, and LA-KDEs calculated using Cross-correlation. (H) Calculated using Similarity. 
(I) Calculated using Likeness. 1σ error bars calculated from repeated subsampling the four samples. K-S and Kuiper tests are 
calculated independently of either PDPs or KDEs.

Figure 9. Summary of metrics for all synthetic populations and the empirical data set. (A) Kuiper test p-value and D value. 
(B) Kuiper test p-value and V values. (C) Cross-correlation, Similarity, Likeness coefficients from comparison of sub sample 
probability density plots (PDPs). (D) Cross-correlation, Similarity, Likeness coefficients from comparison of subsample  Kernel 
density estimates (KDEs). (E) Cross-correlation, Similarity, Likeness coefficients from comparison of subsample  locally adap-
tive (LA) KDEs. X-axis for all plots is as the lowest row. Kolmogorov-Smirnov (K-S) and Kuiper tests are calculated inde-
pendently of either PDPs or KDEs.
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Figure 10. Summary of results of com-
parison of all 20 different synthetic pop-
ulations (190 comparison pairs for each 
subsample size). The solid black line is 
the average of all 190 comparison pairs 
for each sub sample size. Error bars show 
the 1σ based on the 190 comparisons. 
White crosses indicate the least similar of 
the 190 sample pairs for each subsample 
size. Black crosses indicate the most simi-
lar sample pair for each subsample size. 
X-axis for all plots is as the lowest row. 
K-S— Kolmogorov-Smirnov; PDP—proba-
bility density plot; KDE—Kernel density 
estimate; LA—locally adaptive.
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In the following discussion, we test each metric’s ability to quantify sub-
sample similarity. We then evaluate each metric as a hypothesis test to dis-
criminate subsamples from the same versus different populations. Finally, we 
suggest interpretive guidelines for metrics that are strictly a measure of simi-
larity lacking a clear hypothesis test criterion.

Metrics as Descriptors of Sample Similarity

Criteria for Evaluation

We use the following three criteria to evaluate each of the metrics as quan-
titative descriptors of sample similarity (Table 1). (1) For subsamples of the 
same population, the comparison metric should show a monotonic increase in 
measured subsample similarity with increasing subsample size. (2) Compari-
son metrics should maximize the range of possible coefficient values (0–1). (3) 
The comparison metric should minimize nonsystematic artifacts either due to 
subsample size or the complexity of the sample (number of age modes).

As the size of randomly selected subsamples of a population increases, they 
will be increasingly skewed toward modes that contribute greater proportions 
to the population (Andersen, 2005). A perfect match between subsamples and 
a parent population is therefore unlikely. However, the probability of nearly 

matching, for example within one standard deviation, increases with increas-
ing data set size (Andersen, 2005). In order to take advantage of the  increasing 
likelihood of nearly matching despite the decreasing likelihood of an exact 
match with larger data set sizes, we incorporate the standard deviation of the 
statistical metrics in the following discussion. Standard deviation is calculated 
based on the 6 pairings of 4 samples drawn from each population in the case 
of comparison of identical populations, or based on intercomparison of all 20 
different populations when analyzing different populations. Because this vari-
ability is inherent in sampling a multimodal population with varying modal 
proportions, we calculate the mean and standard deviation of the comparison 
metric for all sample pairs (Figs. 4–8).

K-S and Kuiper Tests

Use of the K-S or Kuiper test p-values for quantitative similarity analysis 
of detrital geochronological data sets is likely to lead to incorrect conclusions 
(Satkoski et al., 2013; Vermeesch, 2013). The K-S and Kuiper tests yield highly 
variable, nonsystematic p-values when applied to subsamples drawn from 
the same synthetic population, i.e., there is no convergence in p-values for 
larger subsamples sizes (Figs. 9A, 9B). Taken as a measure of similarity (which 
the p-value is not, though it is sometimes treated as one), this would suggest 
that samples do not become more similar with increasing data set size. Inter-
preted in the same way, the decrease in p-values with increasing subsample 

TABLE 1. EVALUATION OF ALL COMPARISON METRICS CONSIDERED IN THIS STUDY USING THE FOUR CRITERIA OUTLINED IN THE TEXT

Goal Quantitative assessment of similarity Hypothesis test

Criterion

1. Systematic 
increase in measured 

similarity with 
subsample size

2. Utilize the entire 
range of possible 

coefficients

3. Minimize artifacts 
due to sample size 

or population 
complexity

Consistently discriminate 
same versus different 

populations*

K-S p-value No Yes No Mean: Yes Individual: No
K-S D value Yes No Yes n > 950
Kuiper p-value No Yes No Mean: Yes Individual: No
Kuiper V value Yes No Yes n > 500
PDP Cross-correlation Yes Yes Yes n > 300
PDP Similarity Yes No Yes No
PDP Likeness Yes No Yes No
KDE Cross-correlation No Yes No n > 375
KDE Similarity No No No No
KDE Likeness No No No n > 350
LA-KDE Cross-correlation No Yes No n > 500
LA-KDE Similarity No No No No
LA-KDE Likeness No No No n > 400

Note: K-S—Kolmogorov-Smirnov; PDP—probability density plot; KDE—kernel density estimate; LA—locally adaptive (see text).
*Maximum similarity metric from different populations < minimum similarity metric from the same population and empirical data set consistently within 

the region of the same population.
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size of the empirical data set would suggest a decrease in sample similarity 
with larger data sets when applying the K-S or Kuiper tests (Figs. 8E, 8F). As a 
measure of similarity, p-values fail the first and third criteria: they do not reflect 
increasing subsample similarity and they incorporate artifacts that are a func-
tion of subsample size rather than subsample similarity. The K-S and Kuiper 
test p-values are also sensitive to the number and distribution of population 
age modes when applied to the synthetic data sets (Fig. 9). The high stan-
dard deviation further suggests that they are unreliable indicators of sample 
simi larity because the p-values vary dramatically from repeated selection of 
samples of the same size from the same population. Because greater p-values 
do not correlate with greater sample similarity (Figs. 9A, 9B), they cannot be 
used to assess degrees of sample similarity or mixing proportions. We there-
fore turn to the alternative metrics: the K-S D values, Kuiper V values, and the 
coeffi cients for Similarity, Likeness, and Cross-correlation.

As noted by Vermeesch (2013), the D or V values provide more robust 
assess ment of the dissimilarity between samples than do p-values. However, 
both D and V values also fail the second criterion: they typically vary by <0.4 
with increasing subsample size from 25 to 10,000 (Figs. 9A, 9B), suggest-
ing that they are relatively insensitive to differences between samples. The 
D value is most sensitive to variation in CDFs near the median. In addition, 
D values and, to a lesser extent, V values are most sensitive to the relative 
proportions of age modes rather than the mean age of age modes. They will 
return low D or V values for samples whose modal ages do not overlap as 
long as the relative proportion of the age modes are similar and age modes 
are approximately equidistant (Fig. 11C). In the example shown in Figure 11, 
comparison of distributions A and D, which share no age modes, returns a 
lower D value (0.2) than comparison of B and D, which share 3 of 5 age modes 
(D = 0.4). V values of comparison of both A-D and B-D yield V values of 0.4 
(Table 2). Thus, they do not reflect the inversion of expectations observed in D 
values, nor do they reflect the clear correlation between sample age modes.

Cross-Correlation

PDP Cross-correlation fulfills all of the criteria laid out here. It shows a 
systematic increase in subsample similarity with increasing subsample size, 
while utilizing almost the full range of possible values (Fig. 9C). It does not 
reflect artifacts either due to subsample size or the complexity of the sample 
(number of age modes). However, as with most of the other metrics consid-
ered, Cross-correlation is a poor indicator of sample similarity when applied to 
either the KDE or LA-KDE (Figs. 9D, 9E). When applied to the KDE or LA-KDE 
of complex samples, Cross-correlation values decrease over the range from 
n = 25 to n = 300 (Figs. 4G, 5G, 6G, 7G, 9D, 9E). Because there is no way to 
know, a priori, whether a sample is complex or not, this requires analysis of 
at least 300 ages before cross-correlation can be confidently applied to assess 
sample similarity using either the KDE or LA-KDE. We attribute this decrease in 
mean Cross-correlation coefficients to occasional oversmoothing, and hence 

low Cross-correlation coefficients between subsamples either subject to over-
smoothing or not, at low to moderate subsample sizes (Figs. 6D and 7D).

For applications requiring a measure of sample dissimilarity such as multi-
dimensional scaling (MDS; Vermeesch, 2013), the compliment of PDP Cross- 
correlation (the coefficient of nondetermination, 1 – R2) may provide a suitable 
alternative to D or V values (Fig. 11). In this limited experiment, PDP Cross-correla-
tion, Similarity, and Likeness reproduce the degree of overlap of the age modes 
 better than either D or V values (Figs. 11A, 11C). Of these three, PDP Cross-corre-
lation allowed for three-dimensional (3-D) MDS, providing greater resolution 
of intersample distance than did two-dimensional (2-D) (Similarity or Likeness) 
MDS (Fig. 11B).

Similarity and Likeness Coefficients

We consider Similarity and Likeness together because they show many 
similar results. When applied to subsample PDPs the Similarity and Likeness 
coefficients systematically increase with increasing subsample size, fulfilling 
criteria one and three (Fig. 9C). However, like the D and V values, PDP Simi-
larity and Likeness coefficients show minimal variation, and so fail criterion 
two. Minimum Similarity coefficients are typically >0.6 (for n = 25) and increase 
rapidly to ~1. Minimum Likeness coefficients are typically >0.5 and rapidly in-
crease to between 0.8 and 1.

When applied to KDEs or LA-KDEs of subsamples of the same population 
the Similarity coefficient decreases over subsample sizes as large as n = 1000, 
depending on the population complexity (Figs. 9D, 9E), failing criteria one and 
three. As with the PDP Similarity and Likeness coefficients, these show mini-
mal (<0.4) variation with increasing subsample size.

Metrics as Hypothesis Tests

Our criterion for evaluating the suitability of a metrics as a hypothesis test 
is simply that it should be able to consistently discriminate subsamples drawn 
from the same population from those drawn from different populations. We 
also determine the minimum sample size at which the least similar result for 
samples drawn from the same parent population do not overlap the most simi-
lar result for comparison of different data sets (see Fig. 12; summary in Table 1). 
These provide conservative data set sizes for application of their respective 
statistical metrics to discriminate identical from different source populations.

K-S and Kuiper P-Values

Use of individual K-S or Kuiper test p-values as hypothesis tests to evalu-
ate sourcing of sediments from a common parent is problematic. Comparing 
subsamples of the synthetic populations with n > 125, at least 1 of the 6 pairs 
yield K-S p-values < 0.05 in as much as 73% of the subsamples (mean of 14% 
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for the 20 synthetic data sets; Figs. S1–S16 in Supplemental File 2). Similarly, 
the Kuiper test yields p-values <0.05 in as much as 58% of the subsamples 
(mean of 51% for the 20 synthetic data sets). This suggests that individual K-S 
and Kuiper p-values are not reliable indicators as hypothesis tests, because 
too often they reject the null hypothesis at a higher rate than predicted for the 
selected p-value. We attribute this to the distortion introduced into the distri-
bution of small sample sizes by random sampling of a larger population. Mean 

K-S and Kuiper p-values calculated from repeated subsampling (a minimum 
of four trials), however, behave as expected: not rejecting the hypothesis of 
a common source for subsamples of the same population (Figs. 9A, 9B). The 
p-values consistently reject the null hypothesis when applied to sufficiently 
large subsamples of different populations (Figs. 10A, 10B). We conclude that 
use of K-S or Kuiper p-values as binary hypothesis tests requires random sub-
sampling without replacement of geochronological data sets and calculation 

C  3-dimensional MDS

A  
Sample
Ages

Age (Ma) Age (Ma)

A

B

C
D

D-value V-value Cross-correlation Similarity Likeness

D-value V-value Cross-correlation Similarity Likeness

B  2-dimensional MDS Figure 11. (A) Probability density plots and 
cumulative distribution plots of hypotheti-
cal samples A–D. Each sample has 5 modal 
ages, with an associated uncertainty of 
10%. (B) Two-dimensional (2-D) non metric 
multidimensional scaling (MDS) of the 
distributions shown in A using the various  
metrics evaluated in this paper. (C) Three- 
dimensional (3-D) nonmetric MDS. Only 
3-D MDS based on V values and Cross- 
correlation have a z-axis component. Be-
cause the z-axis for D  values, Likeness, and 
Similarity are 0, they are effectively 2-D.
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of mean p-values from multiple applications of these tests to the randomly 
generated subsamples. Robust application of mean K-S p-values to discrimi-
nate identical versus different sources requires sample sizes >1000 because 
maximum p-values remain above 0.05 for subsamples of different populations 
with n < 1000. Maximum Kuiper p-values >0.05 for n < 475 indicate that sample 
sizes ≥475 are required for application of mean Kuiper p-values to discriminate 
identical versus different sources.

D Values and V Values

The conclusion that D and V values are relatively insensitive to sample 
dissimilarity noted here is borne out when they are used to discriminate sub-
samples drawn from different populations. The minimum D values for 
subsam ples of different parent samples are less than maximum values for sub-
samples from the same parent sample for all n < 950 (Fig. 12A). At the same 

time, D values of the empirical data set overlap those from subsamples of 
different synthetic populations for all n < 600 (Fig. 12A). They are within 1s 
of the minimum coefficient from different populations for all n < 1000. For 
 Kuiper test V values, the crossover in these metrics for identical versus differ-
ent populations occurs at n = 600. Similarly, V values from the empirical data 
set overlap V values from subsamples of different synthetic populations for 
n < 300 and are within 1s for n < 600. We interpret this as indicating that the 
D and V values are insufficiently sensitive to consistently discriminate com-
parison of subsamples from different or the same population for n < 300–600 
and may continue to overlap values expected from different populations for 
significantly larger sample sizes.

Cross-Correlation

Cross-correlation is able to consistently discriminate samples from identi-
cal versus different populations for sample sizes that can reasonably be pro-
duced on a regular basis. PDP, KDE, and LA-KDE Cross-correlations of sub-
samples of the empirical data set are well within the field of coefficients of 
subsamples of the same population (Fig. 12). Of the three, the maximum co-
efficients for Cross-correlation of two PDPs of unrelated subsamples diverge 
from the minimum coefficients for subsamples drawn from the same parent 
sample at the smallest sample sizes, n > 300 (Fig. 12C). In contrast, we attribute 
maximum KDE Cross-correlation coefficients of 1 from samples of different 
populations at n < 175 to oversmoothing of the KDE, and hence minimization 
of the differences between samples, at these low to moderate sample sizes 
(e.g., Figs. 6D, 7D, and 10D). We note that the mean KDE Cross-correlation 
coefficient remains low over these sample sizes (Fig. 9D), consistent with only 
occasional oversmoothing by the KDE bandwidth optimization algorithm. For 
sample sizes > 375 the KDE Cross-correlation coefficient is able to consistently 
distinguish samples drawn from the same parent (coefficients >~0.5) from 
those drawn from different parents (coefficients <~0.2) (Fig. 12F). For sample 
sizes >475 the LA-KDE Cross-correlation coefficient is able to consistently dis-
tinguish samples drawn from the same population versus those from different 
populations. However, the difference in coefficients between these two sets is 
less than for the PDP or KDE Cross-correlation coefficients (Fig. 12I).

Similarity and Likeness

For PDP Similarity maximum coefficients for different populations and 
minimum coefficients from the same population overlap for n < 200, though 
the two curves are virtually indistinguishable for larger n. For PDP Likeness, 
the crossover occurs at n = 525. Unexpectedly, when applied to subsamples of 
different populations the mean PDP Similarity and Likeness coefficients show 
a minor increase for very small subsample size but show no change for sub-
samples >200 (Fig. 10C). However, KDE and LA-KDE Similarity and Likeness 

TABLE 2. RETURNED VALUES FOR EACH METRIC EXPLORED IN 
THIS STUDY FOR THE SAMPLES SHOWN IN FIGURE 11

D value A B C D

A 0.00 0.20 0.60 0.20
B 0.20 0.00 0.80 0.40
C 0.60 0.80 0.00 0.60
D 0.20 0.40 0.60 0.00

V value A B C D

A 0.00 0.40 1.00 0.40
B 0.40 0.00 1.00 0.40
C 1.00 1.00 0.00 0.80
D 0.40 0.40 0.80 0.00

PDP Cross-correlation A B C D

A 1.00 0.01 0.00 0.08
B 0.01 1.00 0.12 0.21
C 0.00 0.12 1.00 0.08
D 0.08 0.21 0.08 1.00

PDP Similarity A B C D

A 1.00 0.61 0.51 0.46
B 0.61 1.00 0.17 0.73
C 0.51 0.17 1.00 0.62
D 0.46 0.73 0.62 1.00

PDP Likeness A B C D

A 1.00 0.50 0.26 0.24
B 0.50 1.00 0.06 0.65
C 0.26 0.06 1.00 0.39
D 0.24 0.65 0.39 1.00

Note: PDP—probability density plot (see text).
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Figure 12. Comparison of the most similar 
subsamples of different populations and 
the least similar subsamples from iden-
tical populations indicates that there is 
significant overlap in these coefficients for 
low to moderate sample sizes. The blue 
field is the region occupied by coefficients 
from intercomparison of all 20 different 
populations. The purple field indicates the 
region populated by comparison of the 4 
samples of each of the 20 populations for 
each subsample size. X-axis for all plots 
is as the lowest row. KS— Kolmogorov-
Smirnov; PDP—probability density plot; 
KDE—Kernel density estimate; LA—locally 
adaptive.
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show a much larger decrease in mean coefficients over sample sizes of as 
much as 300 (Figs. 10D, 10E).

Similarity yields overlapping coefficients when comparing KDEs or LA-
KDEs samples of the same population or different populations for all n < 1000, 
suggesting that it is insufficiently sensitive to discriminate identical versus 
different populations. However, KDE and LA-KDE Likeness coefficients for 
identical versus different populations diverge at n >350 or 400, respectively. 
For these tests, the empirical data set yields coefficients well within the range 
of values expected from samples of the same population. We conclude that 
Likeness may be better used in conjunction with KDEs or LA-KDEs rather than 
PDPs. However, KDE Likeness yields coefficients >0.9 for samples of different 
populations to n = 200, reflecting the tendency of the KDE to oversmooth at 
low to moderate sample sizes, and suggesting that larger sample sizes are 
needed for robust application of the Likeness coefficient.

Interpretive Guidelines

The discussion herein provides a method for defining conservative inter-
pretative guidelines for coefficient metrics, including those that lack a clear 
hypothesis test. Rather than a determining a single critical coefficient that 
defines whether samples are drawn from the same population, Figure 9 indi-
cates that all the metrics except p-values vary as a function of sample size. 
Hence, the guidelines are expressed as a function of sample size such that 
for a given sample size, if the coefficient is within the field occupied by sub-
samples of the same population in Figure 12, we cannot reject the hypothesis 
that the samples were drawn entirely from the same parent population. For 
example, for a sample of n = 500 grains, if the PDP Cross-correlation co-
efficient is >0.64, we cannot reject the hypothesis that these samples were 
drawn from the same source (Fig. 12C). Similarly, this approach for a given 
metric identifies the maximum value that may be expected from two un-
related sources. For example, in the case of PDP Cross-correlation with val-
ues <0.52 derived from a data set with n = 500, we cannot reject the hypoth-
esis that two samples were drawn entirely from unrelated populations (Fig. 
12C). Where the two fields overlap we cannot discriminate identical from 
different populations. For example, for a PDP Cross-correlation coefficient 
of 0.4 from 2 samples of n = 100, we cannot rule out derivation either from 
the same or different populations. Coefficients that do not plot in either of 
the fields in Figure 12 are consistent with mixing of different sources. For 
example, for a PDP cross-correlation coefficient of 0.6 from 2 samples of n = 
600, we can rule out total derivation from identical sources and total deri-
vation from different sources. We emphasize that Figure 12 only provides 
preliminary guidelines for interpretation of analysis results, as these cutoff 
values are based on synthetically produced data sets. All of these metrics 
are best applied in a relative rather than absolute sense, and application of a 
cutoff value without consideration of the geologic context is likely to result in 
inaccurate interpretations.

DZstats APPLICATION

In order to facilitate application of quantitative metrics to multiple large 
detrital geochronology data sets, we developed a MATLAB-based application, 
DZstats, that implements all of the metrics discussed in this paper through a 
graphical user interface (Supplemental File 33). Although originally envisioned 
to be applied to detrital zircon U-Pb data sets, DZstats can be applied to any dis-
crete data with associated uncertainties. DZstats has three main modules. The 
first module, Two Sample Compare, allows quick comparison of two samples 
by calculating any individual or all of the statistical metrics mentioned here, 
as well as plotting their PDPs, KDEs, LA-KDEs, and CDFs. The second module, 
Intersample Compare, is used for comparison of multiple data sets in their en-
tirety. It outputs all of the metrics mentioned here for each sample pair as well 
as their PDPs, KDEs, LA-KDEs, and CDFs and the bandwidths used to calculate 
the KDEs. The third module, Subsample Compare, calculates the minimum, 
maximum, mean, and standard deviation of each statistical metric for each 
input sample pair by creating a specified number of random sub samples of 
each data set and applying all of the statistical metrics to each subsam ple pair. 
Because subsampling is done without replacement, the specified subsample 
size must be less than or equal to the smallest input data set. For modules two 
and three, the number of data sets and data set size are limited only by the 
computer’s memory. For all of these modules the user can select KDEs calcu-
lated based on the LA-KDE model of Shimazaki and Shinomoto (2010) or the 
adaptive KDE model of Botev et al. (2010) in addition to standard PDPs (in the 
former two cases the code used in DZstats was written by the original authors; 
see Supplemental Figure 44).

CONCLUSIONS

We applied three criteria to evaluate quantitative assessment of sample 
similarity using the K-S test p-values and D values, Kuiper test p-values and 
V values, and Similarity, Likeness, and Cross-correlation coefficients. K-S or 
 Kuiper test p-values, currently the statistical metrics most widely used to de-
scribe the degree of similarity between detrital geochronological data sets, fail 
two of the criteria. The D and V values do not utilize the full range of possible 
coefficients and so fail one of the criteria. Cross-correlation, Similarity, and 
Likeness coefficients fail at least two of the criteria when applied to KDEs or 
LA-KDEs. Cross-correlation fulfills all three criteria when applied to PDPs.

We caution that the application of individual K-S or Kuiper test p-values to 
detrital geochronology data sets as a hypothesis test of a common sedimen-
tary source is likely to lead to incorrect conclusions. Individual K-S and Kuiper 
p-values are too sensitive to variation between samples of the same popula-
tion by rejecting the null hypothesis at a significance level of 95% for more the 
5% of the samples drawn from identical populations. Instead, we recommend 
calculation of mean p-values based on multiple subsampling of geochrono-
logical data sets without replacement and assessment of mean p-values as 
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a binary hypothesis test. Maximum K-S and Kuiper p-values for comparison 
of subsamples of different populations remain above 0.05 even for large data 
set sizes. Due to this very high sample size requirement, we recommend that 
p-values be used in conjunction with the other metrics explored here for quan-
titative evaluation.

For metrics lacking a clear hypothesis test criterion, we propose interpre-
tive guidelines whereby we cannot reject the hypothesis that two samples are 
drawn from the same parent population if their coefficients are greater than 
the minimum coefficient from similar-sized subsamples of any of the 20 syn-
thetic populations presented here. Similarly, we cannot reject the hypothesis 
that 2 samples were drawn entirely from different populations if they yield co-
efficients less than the maximum from intercomparison of subsamples of the 
20 synthetic populations. As with other hypothesis tests, this guideline cannot 
be used to determine which samples are drawn from the same parent popula-
tion, but only to identify those samples that are unlikely to be drawn from the 
same parent population. Although this provides guidelines for data interpreta-
tion, we emphasize that metrics lacking a clear hypothesis test are best utilized 
to determine the degree of similarity of samples rather than to establish an 
absolute pass-fail coefficient.

Of metrics lacking a clear hypothesis test, PDP Cross-correlation requires 
the smallest data set for discrimination of samples drawn from the same par-
ent population verses those drawn from different parent populations. Coeffi-
cients from data sets drawn from the same parent population and data sets 
drawn from different parent populations may overlap for small (n < 300) data 
sets. We conclude that large data sets are necessary to quantitatively describe 
similarity or difference between samples. Because a perfect match between 
samples and a source population is increasingly unlikely with increasing sam-
ple size, we advocate incorporation and reporting of uncertainties of compari-
son metrics through repeated random sampling of geochronological data sets 
and application of the statistical metrics to each sampled pair.
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