Crustal growth of the Cenozoic Central Andes from zircon trace and rare Earth element concentrations

Kurt Sundell^{1*} Mihai Ducea^{1,2} Barbara Carrapa¹ Joel Saylor³

¹Department of Geosciences, University of Arizona, Tucson, AZ, USA ²Faculty of Geology and Geophysics, University of Bucharest, Bucharest, Romania ³Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Canada

*Corresponding author: sundell@arizona.edu

JBC

LASERCHRON CENTER

Department of Geosciences University of Arizona

Geologic Setting

Motivation

Modified from Ward et al. (2016)

Motivation

What is the timing of crustal thickening?

What is its relationship to surface uplift and paleoclimate?

Modified from Ward et al. (2016)

Zircon Samples

Ν

14°S-

Lake

Titicaca

Bolivi

Methods – LA-ICPMS

Magma Chemistry

$\frac{\sum LREE}{\sum HREE}, \frac{La}{Yb}, \frac{Sm}{Yb}$

Magma Chemistry

LREE La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu HREE

Thick Crust

Magma Chemistry

LREE La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu HREE

Igneous Zircon

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Supervised Machine Learning

Predicted Responses (Rock Type)

Granitoids

Results \sum **LREE**/ \sum **HREE**

Results \sum **LREE** $/\sum$ **HREE**

Results (La/Yb)_N

Results (La/Yb)_N

Results (Sm/Yb)_N

LREE La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu HREE

Results (Sm/Yb)_N

LREE La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu HREE

Conclusions

What is the timing of crustal thickening?

What is its relationship to surface uplift and paleoclimate?

Conclusions

What is the timing of crustal thickening? Major thickening 40–20 Ma, continued thickening < 20 Ma

What is its relationship to surface uplift and paleoclimate?

Conclusions

What is the timing of crustal thickening? Major thickening 40–20 Ma, continued thickening < 20 Ma

Acknowledgements

Postdoc Advisor: George Gehrels

- Modern river samples: Marty Pepper
- Arizona LaserChron Center Staff: Mark Pecha, Nicky Giesler

UA Postdocs: Gilby Jepson, Sarah George, Allen Shaen

*Corresponding author: sundell@arizona.edu

ARIZONA LASERCHRON CENTER

Department of Geosciences University of Arizona

